The objective of this core is to provide complementary histopathologic and scientific support for the research projects by localizing proteins and/or mRNAs by immunohistochemistry or in situ hybridization in tissues and cultured cells. Dr. James A. Richardson will supervise the core. The core has an established history of expertise and competence in: 1) processing of tissues for routine paraffin embedding; 2) harvesting and flash-freezing of skeletal muscle and heart for cryotomy; 3) the standard histologic stains and special stains (Masson?s Trichrome, PAS, Feulgen) when required; 4) ATPase fibertyping and other enzyme histochemistry; 5) radioisotopic in situ hybridization; 6) maintenance of a library of murine embryos embedded in paraffin for analysis of developmental gene expression by in situ hybridization; and 7) bright-field, dark-field, phasecontrast, and epifluorescence microscopy and image analysis.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL006296-45
Application #
7074743
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2005-07-01
Budget End
2006-06-30
Support Year
45
Fiscal Year
2005
Total Cost
$374,195
Indirect Cost
Name
University of Texas Sw Medical Center Dallas
Department
Type
DUNS #
800771545
City
Dallas
State
TX
Country
United States
Zip Code
75390
Chang, Audrey N; Battiprolu, Pavan K; Cowley, Patrick M et al. (2015) Constitutive phosphorylation of cardiac myosin regulatory light chain in vivo. J Biol Chem 290:10703-16
Thomas, Gail D (2015) Functional sympatholysis in hypertension. Auton Neurosci 188:64-8
Martin, Elizabeth A; Barresi, Rita; Byrne, Barry J et al. (2012) Tadalafil alleviates muscle ischemia in patients with Becker muscular dystrophy. Sci Transl Med 4:162ra155
Fadel, Paul J; Farias Iii, Martin; Gallagher, Kevin M et al. (2012) Oxidative stress and enhanced sympathetic vasoconstriction in contracting muscles of nitrate-tolerant rats and humans. J Physiol 590:395-407
Sachan, Nita; Dey, Asim; Rotter, David et al. (2011) Sustained hemodynamic stress disrupts normal circadian rhythms in calcineurin-dependent signaling and protein phosphorylation in the heart. Circ Res 108:437-45
Stull, James T; Kamm, Kristine E; Vandenboom, Rene (2011) Myosin light chain kinase and the role of myosin light chain phosphorylation in skeletal muscle. Arch Biochem Biophys 510:120-8
Massare, Jorge; Berry, Jeff M; Luo, Xiang et al. (2010) Diminished cardiac fibrosis in heart failure is associated with altered ventricular arrhythmia phenotype. J Cardiovasc Electrophysiol 21:1031-7
Tandan, Samvit; Wang, Yanggan; Wang, Thomas T et al. (2009) Physical and functional interaction between calcineurin and the cardiac L-type Ca2+ channel. Circ Res 105:51-60
Huang, Jian; Shelton, John M; Richardson, James A et al. (2008) Myosin regulatory light chain phosphorylation attenuates cardiac hypertrophy. J Biol Chem 283:19748-56
Tannous, Paul; Zhu, Hongxin; Nemchenko, Andriy et al. (2008) Intracellular protein aggregation is a proximal trigger of cardiomyocyte autophagy. Circulation 117:3070-8

Showing the most recent 10 out of 167 publications