: Hypoxic pulmonary hypertension (PH) contributes to the morbidity and mortality of patients with lung and heart diseases. The pathogenesis of hypoxic PH comprises sustained pulmonary vasoconstriction and structural remodeling of pulmonary arteries. The vasoconstriction involves increased activity of the vasoconstrictors endothelin-1 (ET-1) and serotonin (5-HT), and deficient activity of the vasodilator nitric oxide (NO). This mediator imbalance is also implicated in the arterial wall thickening that includes vascular smooth muscle cell (VSMC) growth. The small GTPase RhoA is activated in VSMC by ET-1 and 5-HT, and inhibited by NO, but the role of RhoA and its downstream effector Rho-kinase in the pathogenesis of hypoxic PH is unknown. However, recent advances in the cell biology and systemic vascular pathophysiology of this signal transduction pathway, and our preliminary results, suggest that Rho/Rho-kinase signaling plays a key role in both the sustained vasoconstriction and arterial remodeling of hypoxic PH. Thus, we hypothesize that chronic hypoxia leads to activation of Rho/Rho-kinase signaling which contributes to PH by: mediating sustained pulmonary vasoconstriction, promoting VSMC growth and vascular remodeling, and regulating the expression of genes related to increased activity of ET-1 and 5-HT, and deficient production of NO. We will investigate in catheterized rats, perfused lungs, isolated pulmonary arteries, and cultured pulmonary artery cells if: 1) chronic hypoxia activates Rho/Rho-kinase signaling in pulmonary arteries, 2) Rho/Rho-kinase-induced Ca2+ sensitization of VSMC contraction mediates sustained hypoxic pulmonary vasoconstriction, and 3) chronic in vivo inhibition of Rho-kinase prevents and reverses development of hypoxic PH by suppressing vasoconstriction, vascular remodeling, and the changes in gene expression that lead to increased activity of ET-1 and 5-HT, and deficient production of NO. Our investigation of the mechanisms by which Rho/Rho-kinase signaling is activated and contributes to hypertensive pulmonary vascular tone and structure will provide new insights into the cellular mechanisms of PH. This information may lead to novel and more effective therapy for PH.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL014985-34
Application #
7198038
Study Section
Project Start
Project End
Budget Start
2006-04-01
Budget End
2007-03-31
Support Year
34
Fiscal Year
2006
Total Cost
$245,891
Indirect Cost
Name
University of Colorado Denver
Department
Type
DUNS #
041096314
City
Aurora
State
CO
Country
United States
Zip Code
80045
Ding, Yonghui; Xu, Xin; Sharma, Sadhana et al. (2018) Biomimetic soft fibrous hydrogels for contractile and pharmacologically responsive smooth muscle. Acta Biomater 74:121-130
Kumar, Rahul; Graham, Brian (2018) How does inflammation contribute to pulmonary hypertension? Eur Respir J 51:
Jiang, Xinguo; Nicolls, Mark R; Tian, Wen et al. (2018) Lymphatic Dysfunction, Leukotrienes, and Lymphedema. Annu Rev Physiol 80:49-70
Schäfer, Michal; Humphries, Stephen; Stenmark, Kurt R et al. (2018) 4D-flow cardiac magnetic resonance-derived vorticity is sensitive marker of left ventricular diastolic dysfunction in patients with mild-to-moderate chronic obstructive pulmonary disease. Eur Heart J Cardiovasc Imaging 19:415-424
D'Alessandro, Angelo; El Kasmi, Karim C; Plecitá-Hlavatá, Lydie et al. (2018) Hallmarks of Pulmonary Hypertension: Mesenchymal and Inflammatory Cell Metabolic Reprogramming. Antioxid Redox Signal 28:230-250
Karoor, Vijaya; Fini, Mehdi A; Loomis, Zoe et al. (2018) Sustained Activation of Rho GTPases Promotes a Synthetic Pulmonary Artery Smooth Muscle Cell Phenotype in Neprilysin Null Mice. Arterioscler Thromb Vasc Biol 38:154-163
Stenmark, Kurt R; Graham, Brian B (2018) Urocortin 2: will a drug targeting both the vasculature and the right ventricle be the future of pulmonary hypertension therapy? Cardiovasc Res 114:1057-1059
Madhavan, Krishna; Frid, Maria G; Hunter, Kendall et al. (2018) Development of an electrospun biomimetic polyurea scaffold suitable for vascular grafting. J Biomed Mater Res B Appl Biomater 106:278-290
Stenmark, Kurt R; Frid, Maria G; Graham, Brian B et al. (2018) Dynamic and diverse changes in the functional properties of vascular smooth muscle cells in pulmonary hypertension. Cardiovasc Res 114:551-564
Schäfer, Michal; Kheyfets, Vitaly O; Barker, Alex J et al. (2018) Reduced shear stress and associated aortic deformation in the thoracic aorta of patients with chronic obstructive pulmonary disease. J Vasc Surg 68:246-253

Showing the most recent 10 out of 148 publications