Whereas decrease in muscle mass (sarcopenia) is a well known alteration in old age, the effect of aging on the muscle microvasculature is largely unknown. Data on changes in muscle cappilarization with aging have been contradictory, and little is known to capillary-fiber structure in relation to fiber type, size and metabolic characteristics in aged muscles. New concepts in muscle structural capacity for O2 flux have not been explored in relation to aging and there is no consensus on the major determinant(s) and limitation(s) to muscle capacity to extract and utilize O2 in advanced aged. Using methods we developed to assess several aspects of muscle capillary-fiber morphometrics, we established that the size of the capillary-to-fiber interface is key to O2 transfer capacity in aerobic muscles, and we examined its plasticity in relation to fiber mitochondrial volume in response to increased use and chronic exposure to hypoxia. We propose to use these methods to examine muscle capacity for O2 flux in aging, and study its limit() and plasticity in relation to fiber demand and distribution.
Our specific aims are 1) to assess the structural capacity for O2 flux from capillary to fiber mitochondria in aged muscles covering a wide range of fiber type distributions, 2) compare with calorically-restricted animals, 3) compare with disuse, 4) assess plasticities with chronically increased used, 5) measure mitochondrial respiratory rates, 6) examine muscle O2 delivery in individual capillaries, and 7) model oxygenation in aged muscles. Our central hypothesis is that maintenance of O2 flux rates from capillary to fiber mitochondria in aged muscles depends on the maintenance of the size of the capillary-to-fiber interface relative to the to the surface area of fiber mitochondrial cristae, independent of diffusion distance, fiber type distribution or level of aerobic capacity. The data should provide new insights in the understanding of key aspects of structure-function correlations in muscle capacity for blood-tissue O2 transfer during the aging process, and it should help in the understanding and management of impaired tissue oxygenation in the elderly. In contrast of Dr. Richardson also involving in aging studies, the present proposal uses animal models (rat and hamster).

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Diego
La Jolla
United States
Zip Code
Richardson, Russell S; Wary, Claire; Wray, D Walter et al. (2015) MRS Evidence of Adequate O? Supply in Human Skeletal Muscle at the Onset of Exercise. Med Sci Sports Exerc 47:2299-307
Esposito, F; Wagner, P D; Richardson, R S (2015) Incremental large and small muscle mass exercise in patients with heart failure: evidence of preserved peripheral haemodynamics and metabolism. Acta Physiol (Oxf) 213:688-99
Olfert, I Mark; Malek, Moh H; Eagan, Tomas M L et al. (2014) Inflammatory cytokine response to exercise in alpha-1-antitrypsin deficient COPD patients 'on' or 'off' augmentation therapy. BMC Pulm Med 14:106
Poole, David C; Copp, Steven W; Ferguson, Scott K et al. (2013) Skeletal muscle capillary function: contemporary observations and novel hypotheses. Exp Physiol 98:1645-58
Koga, S; Wüst, R C I; Walsh, B et al. (2013) Increasing temperature speeds intracellular PO2 kinetics during contractions in single Xenopus skeletal muscle fibers. Am J Physiol Regul Integr Comp Physiol 304:R59-66
Breen, Ellen C; Malloy, Jaret L; Tang, Kechun et al. (2013) Impaired pulmonary defense against Pseudomonas aeruginosa in VEGF gene inactivated mouse lung. J Cell Physiol 228:371-9
Tang, Kechun; Murano, George; Wagner, Harrieth et al. (2013) Impaired exercise capacity and skeletal muscle function in a mouse model of pulmonary inflammation. J Appl Physiol 114:1340-50
Wray, D Walter; Nishiyama, Steven K; Donato, Anthony J et al. (2011) The paradox of oxidative stress and exercise with advancing age. Exerc Sport Sci Rev 39:68-76
Esposito, Fabio; Mathieu-Costello, Odile; Entin, Pauline L et al. (2010) The skeletal muscle VEGF mRNA response to acute exercise in patients with chronic heart failure. Growth Factors 28:139-47
Wray, D Walter; Nishiyama, Steve K; Donato, Anthony J et al. (2010) Human vascular aging: limb-specific lessons. Exerc Sport Sci Rev 38:177-85

Showing the most recent 10 out of 382 publications