This research program continues to focus on serum lipoproteins considered as biochemical entities of significance in the etiology of atherosclerosis, lipid disorders and other diseases. Understanding such relationships requires the elucidation of the chemical, physical, and functional characteristics of the lipoproteins. Our research therefore emphasizes detailed characterization, as well as quantification, of serum lipoproteins in terms of classes and subclasses, distributions, interrelationships and origins. Our investigations of the lipoproteins will address a variety of problems and employ a broad scope of experimental techniques and skills. Among the principal tools that we expect to develop and apply to fundamental biophysical and biomedical problems are: analytic ultracentrifugation, electrophoresis, electron microscopy, chromatography, enzymatic methods and computer technology. A new apolipoprotein core unit will be directed toward determination of specific apolipoproteins. Lipoprotein structure and function will be examined in native and partially degraded particles and in physical or enzymatically reassembled model structures. Transformation in lipoprotein distributions will be studied in vitro as well as in vivo; the latter as a function of diet, drugs and disease. Human cord blood will be analyzed for information and insights into the genesis of lipoproteins. A major methodologic effort will be concerned with detection and minimization of potential artifacts and degradation arising from lipoprotein isolation and analysis. The unique methodologic resources of this Program Project will be available for outside collaborations on specialized or unique biomedical problems. The interactive design of developing methodology with application to basic and clinical research problems remains a major feature of our Program Project.
Showing the most recent 10 out of 233 publications