Hypertension is a complex disease process involving many pathophysiological changes. In this Program Project, the individual research topics focus on the theme that mechanistic cellular changes induced by genetic and environmental factors contribute to the abnormal control of blood pressure in hypertension. The strategy of the group is to monitor many relevant variables during the development of hypertension with the goal of defining the complete sequence of events from the introduction of an intervention (experimentally imposed or genetic) to the resultant elevation in blood pressure. Among these variables are alterations in neural and endocrine factors, cellular events and molecular and genetic characteristics. Six principal investigators from four departments (2 clinical and 2 pre-clinical) have joined to study these changes. Animal models will include genetically hypertensive rats and renal and mineralocorticoid hypertensive rats. In addition, a new model of hypertension produced by infusion of oleic and/or palmitic acid in rats will be characterized. Among the specific variables measured will be ion fluxes in vascular and endothelial cells, hormone levels and secretion (renin, aldosterone, catecholamine, insulin), vascular reactivity, ion channel activity. mRNA for specific proteins, enzyme activities and genetic associations. Research strategies will utilize the professional expertise and equipment described in two of three core units (Core 2, Animal; C3, Chemistry). Biostatistics support and scientific management will be coordinated through the Administrative Core (C1). From these integrated projects, a better understanding of the initiating factors of hypertension will emerge.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZHL1-PPG-D (M1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Michigan Ann Arbor
Schools of Medicine
Ann Arbor
United States
Zip Code
Rocchini, Albert P; Yang, John Q; Smith, Marla J et al. (2010) Serial changes in norepinephrine kinetics associated with feeding dogs a high-fat diet. J Clin Hypertens (Greenwich) 12:117-24
Kamal, Mohamed A; Keep, Richard F; Smith, David E (2008) Role and relevance of PEPT2 in drug disposition, dynamics, and toxicity. Drug Metab Pharmacokinet 23:236-42
Duan, Sheng Zhong; Ivashchenko, Christine Y; Whitesall, Steven E et al. (2007) Direct monitoring pressure overload predicts cardiac hypertrophy in mice. Physiol Meas 28:1329-39
Hu, Yongjun; Shen, Hong; Keep, Richard F et al. (2007) Peptide transporter 2 (PEPT2) expression in brain protects against 5-aminolevulinic acid neurotoxicity. J Neurochem 103:2058-65
Ennis, Steven R; Keep, Richard F (2007) Effect of sustained-mild and transient-severe hyperglycemia on ischemia-induced blood-brain barrier opening. J Cereb Blood Flow Metab 27:1573-82
Shen, Hong; Ocheltree, Scott M; Hu, Yongjun et al. (2007) Impact of genetic knockout of PEPT2 on cefadroxil pharmacokinetics, renal tubular reabsorption, and brain penetration in mice. Drug Metab Dispos 35:1209-16
Xiang, Jianming; Chiang, Pei-Pei; Hu, Yongjun et al. (2006) Role of PEPT2 in glycylsarcosine transport in astrocyte and glioma cultures. Neurosci Lett 396:225-9
Ennis, S R; Keep, R F (2006) Effects of 2,4-dinitrophenol on ischemia-induced blood-brain barrier disruption. Acta Neurochir Suppl 96:295-8
Carello, Katari A; Whitesall, Steven E; Lloyd, Mary C et al. (2006) Asymmetrical dimethylarginine plasma clearance persists after acute total nephrectomy in rats. Am J Physiol Heart Circ Physiol 290:H209-16
Xiang, Jianming; Hu, Yongjun; Smith, David E et al. (2006) PEPT2-mediated transport of 5-aminolevulinic acid and carnosine in astrocytes. Brain Res 1122:18-23

Showing the most recent 10 out of 291 publications