During the past four years, we have used mutant mammalian cells to clone three new genes essential to the SREBP pathway that regulate cholesterol and fatty acid metabolism in mammalian cells. These three genes are SREBP cleavage-activating protein (SCAP), Site-1 protease (S1P), and Site-2 protease (S2P). The mutant cells have also proven crucial to our analysis of the function of these loci. We will continue to use the tools of mammalian cell genetics to pursue the hypothesis that additional essential genes regulating the SREBP signaling pathway remain to be discovered. In particular, we seek to identify the gene encoding a putative """"""""ER retention protein"""""""" that is required for the sterol-regulated movement of the SCAP/SREBP complex between the endoplasmic reticulum (ER) and the Golgi. This protein may hold the key to the cholesterol feedback phenomenon. In addition, we will initiate a new direction, in Drosophila, to extend our genetic analysis of the SREBP pathway to an organism that cannot synthesize cholesterol. In cultured Drosophila cells, our aim is to identify metabolites that regulate SREBP activity in flies, as well as to identify the gene targets of this pathway. The lack of cholesterol synthesis in flies will allow us to study the regulation of SREBP signaling by non-sterol metabolites in the absence of the complications of the sterol-mediated regulation observed in mammalian systems. We will study the SREBP pathway in vivo by creating mutant flies lacking SREBP, S1P, S2P, and SCAP. These mutants will enable us to identify and characterize phenotypes associated with the loss of function of the SREBP pathway in an animal in which cholesterol feedback is not a normal control mechanism. Once such phenotypes are known, we will use genetic strategies unique to Drosophila to screen for genes involved in the SREBP pathway that would otherwise be difficult to identify in the mammalian system.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL020948-28
Application #
6910657
Study Section
Project Start
2004-07-01
Project End
2007-06-30
Budget Start
2004-07-01
Budget End
2005-06-30
Support Year
28
Fiscal Year
2004
Total Cost
$321,037
Indirect Cost
Name
University of Texas Sw Medical Center Dallas
Department
Type
DUNS #
800771545
City
Dallas
State
TX
Country
United States
Zip Code
75390
DeBose-Boyd, Russell A; Ye, Jin (2018) SREBPs in Lipid Metabolism, Insulin Signaling, and Beyond. Trends Biochem Sci 43:358-368
Brown, Michael S; Radhakrishnan, Arun; Goldstein, Joseph L (2018) Retrospective on Cholesterol Homeostasis: The Central Role of Scap. Annu Rev Biochem 87:783-807
Russell, David W (2018) Lucky, times ten: A career in Texas science. J Biol Chem 293:18804-18827
Que, Xuchu; Hung, Ming-Yow; Yeang, Calvin et al. (2018) Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolaemic mice. Nature 558:301-306
Stender, Stefan; Smagris, Eriks; Lauridsen, Bo K et al. (2018) Relationship between genetic variation at PPP1R3B and levels of liver glycogen and triglyceride. Hepatology 67:2182-2195
Schumacher, Marc M; Jun, Dong-Jae; Johnson, Brittany M et al. (2018) UbiA prenyltransferase domain-containing protein-1 modulates HMG-CoA reductase degradation to coordinate synthesis of sterol and nonsterol isoprenoids. J Biol Chem 293:312-323
Mitsche, Matthew A; Hobbs, Helen H; Cohen, Jonathan C (2018) Patatin-like phospholipase domain-containing protein 3 promotes transfer of essential fatty acids from triglycerides to phospholipids in hepatic lipid droplets. J Biol Chem 293:6958-6968
Banfi, Serena; Gusarova, Viktoria; Gromada, Jesper et al. (2018) Increased thermogenesis by a noncanonical pathway in ANGPTL3/8-deficient mice. Proc Natl Acad Sci U S A 115:E1249-E1258
Fine, Michael; Schmiege, Philip; Li, Xiaochun (2018) Structural basis for PtdInsP2-mediated human TRPML1 regulation. Nat Commun 9:4192
Linden, Albert G; Li, Shili; Choi, Hwa Y et al. (2018) Interplay between ChREBP and SREBP-1c coordinates postprandial glycolysis and lipogenesis in livers of mice. J Lipid Res 59:475-487

Showing the most recent 10 out of 766 publications