Lipoprotein lipase (LPL), and to some degree hepatic lipase (HL), have been associated with phenotypes comprising the metabolic syndrome, including insulin resistance, hypertension, obesity, elevated plasma triglyceride levels, and low HDL cholesterol concentrations. This Project will use multifaceted approaches to identify both cis- and trans-acting factors influencing lipase activity levels, and the association of these factors with the metabolic syndrome. The first two aims will identify proteins that assist nascent forms of LPL and HL to fold into fully functional enzymes, and assess the ability of these proteins to regulate lipase activity levels.
The third aim will determine mechanisms responsible for the interaction of LPL with its chief modulator of activity, apoC-ll, and the location of heparin binding sites that correctly orient LPL at the cell surface. The fourth specific aim will determine whether variation in the 3'-untranslated region of the LPL gene is responsible for the association of linked genetic markers with measures of insulin sensitivity.
The final aim will elucidate the role of selected candidate genes in controlling the levels of post-heparin LPL activity. Thus, this Project collectively investigates a constellation of diverse factors influencing lipase activity levels, a possible key determinant of many abnormalities underlying the metabolic syndrome.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL028481-22
Application #
7312436
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
2006-02-01
Project End
2010-01-31
Budget Start
2006-02-01
Budget End
2007-01-31
Support Year
22
Fiscal Year
2006
Total Cost
$474,915
Indirect Cost
Name
University of California Los Angeles
Department
Type
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Kang, Eun Yong; Lee, Cue Hyunkyu; Furlotte, Nicholas A et al. (2018) An Association Mapping Framework To Account for Potential Sex Difference in Genetic Architectures. Genetics 209:685-698
Seldin, Marcus M; Koplev, Simon; Rajbhandari, Prashant et al. (2018) A Strategy for Discovery of Endocrine Interactions with Application to Whole-Body Metabolism. Cell Metab 27:1138-1155.e6
Lang, Jennifer M; Pan, Calvin; Cantor, Rita M et al. (2018) Impact of Individual Traits, Saturated Fat, and Protein Source on the Gut Microbiome. MBio 9:
Cherlin, Svetlana; Wang, Maggie Haitian; Bickeböller, Heike et al. (2018) Detecting responses to treatment with fenofibrate in pedigrees. BMC Genet 19:64
Park, Shuin; Ranjbarvaziri, Sara; Lay, Fides D et al. (2018) Genetic Regulation of Fibroblast Activation and Proliferation in Cardiac Fibrosis. Circulation 138:1224-1235
Roberts, Adam B; Gu, Xiaodong; Buffa, Jennifer A et al. (2018) Development of a gut microbe-targeted nonlethal therapeutic to inhibit thrombosis potential. Nat Med 24:1407-1417
Zhu, W; Buffa, J A; Wang, Z et al. (2018) Flavin monooxygenase 3, the host hepatic enzyme in the metaorganismal trimethylamine N-oxide-generating pathway, modulates platelet responsiveness and thrombosis risk. J Thromb Haemost 16:1857-1872
Lee, Jessica M; Ong, Jessica R; Vergnes, Laurent et al. (2018) Diet1, bile acid diarrhea, and FGF15/19: mouse model and human genetic variants. J Lipid Res 59:429-438
Miao, Zong; Alvarez, Marcus; Pajukanta, Päivi et al. (2018) ASElux: an ultra-fast and accurate allelic reads counter. Bioinformatics 34:1313-1320
Kurt, Zeyneb; Barrere-Cain, Rio; LaGuardia, Jonnby et al. (2018) Tissue-specific pathways and networks underlying sexual dimorphism in non-alcoholic fatty liver disease. Biol Sex Differ 9:46

Showing the most recent 10 out of 518 publications