Previous epidemiological studies have shown that the metabolic syndrome is very common with a population prevalence of ~30% in middle-aged Americans. The metabolic syndrome predisposes to coronary artery disease, the major cause of death in the U.S. Elevated plasma triglycerides (TGs) and low high-density lipoprotein cholesterol (HDL-C) are the key atherogenic lipid phenotypes ofthe metabolic syndrome. However, the genetic basis for the metabolic syndrome is not well understood. The major goal of project 2 is to systematically identify DNA sequence variants, genes and metabolic pathways contributing to the lipid traits, TGs and HDL-C, of the metabolic syndrome and to investigate the sequence variants for risk as well as for gene-gene and gene-environment interacfions in the populafion.
Specific Aimi focuses on resequencing ofthe genes we identified during the previous cycle of this Project 2 (WWOX and LMFI) to identify the variants exhibiting the strongest phenotypic effects. These variants will be further investigated in functional studies. Our ultimate goal is to provide novel biomarkers and targets for clinical interventions.
Specific Aim 2 integrates genomic data obtained from mouse and human to systemically identify novel genes and pathways implicated at the DNA and RNA level in the metabolic syndrome related lipid traits in human. As an individual's risk to develop a complex cardiovascular phenotype is a combination of suscepfibility variants, environmental factors, behavior and chance, we will investigate the DNA sequence variants supported by multiple lines of evidence for risk as well as for gene-gene and gene-environment interactions in a large populafion sample, the METabolic Syndrome In Men (METSIM) study, comprising currenfiy 8,600 Finns, and ultimately 10,000 Finns in 2010. This study will be performed in collaboration with Dr. Markku Laakso, University of Kuopio, Finland who is collecfing the METSIM sample. Ufilizing this extensive population sample with refined phenotypes available for the study gives us a unique opportunity to explore the population risks and gene-environment interactions. The gene-environment interactions, critical for the expression of complex traits, have not been investigated in the r;ecent genome-wide association studies, because there are very few large enough population samples such as the METSIM study with refined enough phenotypic informafion available for gene-environment interaction analyses. Elucidafion of the unknown genefic factors and molecular mechanisms influencing the high suscepfibility to the metabolic syndrome in human is of great relevance to the American healthcare system.

Public Health Relevance

The metabolic syndrome is very common with a populafion prevalence of -30% in middle-aged Americans, and it predisposes these individuals to coronary artery disease. However, the genefic factors underlying this high susceptibility are pooriy identified. The major goal of this proposal is to systemically identify novel genes and pathways contributing to the lipid traits ofthe metabolic syndrome in human and to determine populafion risks and gene-environment interactions related to the identified variants in a large population-based study.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL028481-27
Application #
8300885
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2011-07-01
Budget End
2012-06-30
Support Year
27
Fiscal Year
2011
Total Cost
$435,641
Indirect Cost
Name
University of California Los Angeles
Department
Type
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Small, Kerrin S; Todor?evi?, Marijana; Civelek, Mete et al. (2018) Regulatory variants at KLF14 influence type 2 diabetes risk via a female-specific effect on adipocyte size and body composition. Nat Genet 50:572-580
Mangul, Serghei; Yang, Harry Taegyun; Strauli, Nicolas et al. (2018) ROP: dumpster diving in RNA-sequencing to find the source of 1 trillion reads across diverse adult human tissues. Genome Biol 19:36
Cantor, Rita; Navarro, Linda; Pan, Calvin (2018) Identifying fenofibrate responsive CpG sites. BMC Proc 12:43
Rahmani, Elior; Schweiger, Regev; Shenhav, Liat et al. (2018) BayesCCE: a Bayesian framework for estimating cell-type composition from DNA methylation without the need for methylation reference. Genome Biol 19:141
Goldberg, Ira J; Reue, Karen; Abumrad, Nada A et al. (2018) Deciphering the Role of Lipid Droplets in Cardiovascular Disease: A Report From the 2017 National Heart, Lung, and Blood Institute Workshop. Circulation 138:305-315
Hui, Simon T; Kurt, Zeyneb; Tuominen, Iina et al. (2018) The Genetic Architecture of Diet-Induced Hepatic Fibrosis in Mice. Hepatology 68:2182-2196
Kang, Eun Yong; Lee, Cue Hyunkyu; Furlotte, Nicholas A et al. (2018) An Association Mapping Framework To Account for Potential Sex Difference in Genetic Architectures. Genetics 209:685-698
Seldin, Marcus M; Koplev, Simon; Rajbhandari, Prashant et al. (2018) A Strategy for Discovery of Endocrine Interactions with Application to Whole-Body Metabolism. Cell Metab 27:1138-1155.e6
Lang, Jennifer M; Pan, Calvin; Cantor, Rita M et al. (2018) Impact of Individual Traits, Saturated Fat, and Protein Source on the Gut Microbiome. MBio 9:
Cherlin, Svetlana; Wang, Maggie Haitian; Bickeböller, Heike et al. (2018) Detecting responses to treatment with fenofibrate in pedigrees. BMC Genet 19:64

Showing the most recent 10 out of 518 publications