The long-term objective of this proposal is a more complete understanding, at the molecular level, of the regulation of hemoglobin synthesis and the role of erythropoietin in this regulation. One aspect of the mechanism of erythropoietin action on red cell differentiation is that of initiation and control of transcription of the globin genes. The transformed mouse cell lines, IW32 and NNlO, which secrete erythropoietin constitutively, are good models in which to study this process since they can also be induced, by hemin or butyrate, to transcribe the alpha and beta globin loci. A control cell line (201), which does not secrete erythropoietin, transcribes the alpha globin message but not the beta after exposure to hemin or butyrate. The problem thus is one of the mechanism of differential gene expression and the possible role of trans-acting, inhibitory factors in the regulation of the beta globin gene. This model may be related to various human disorders in which either a globin gene is not expressed or one is expressed and should be suppressed to permit the expression of an alternative. IW32 cells have a rearranged and amplified erythropoietin gene and are being used to study the structural features that permit constitutive expression of the erythropoietin gene.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
2P01HL030121-11A1
Application #
3758355
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
11
Fiscal Year
1994
Total Cost
Indirect Cost
Name
University of Chicago
Department
Type
DUNS #
225410919
City
Chicago
State
IL
Country
United States
Zip Code
60637
Cassady, Kevin A; Gross, Martin (2002) The herpes simplex virus type 1 U(S)11 protein interacts with protein kinase R in infected cells and requires a 30-amino-acid sequence adjacent to a kinase substrate domain. J Virol 76:2029-35
Gupta, M; Mungai, P T; Goldwasser, E (2000) A new transacting factor that modulates hypoxia-induced expression of the erythropoietin gene. Blood 96:491-7
Kung, C; Fan, L; Goldwasser, E (2000) The role of tyrosine 15 in erythropoietin action. Arch Biochem Biophys 379:85-9
Gross, M; Hessefort, S; Olin, A (1999) Purification of a 38-kDa protein from rabbit reticulocyte lysate which promotes protein renaturation by heat shock protein 70 and its identification as delta-aminolevulinic acid dehydratase and as a putative DnaJ protein. J Biol Chem 274:3125-34
Cassady, K A; Gross, M; Roizman, B (1998) The second-site mutation in the herpes simplex virus recombinants lacking the gamma134.5 genes precludes shutoff of protein synthesis by blocking the phosphorylation of eIF-2alpha. J Virol 72:7005-11
Cassady, K A; Gross, M; Roizman, B (1998) The herpes simplex virus US11 protein effectively compensates for the gamma1(34.5) gene if present before activation of protein kinase R by precluding its phosphorylation and that of the alpha subunit of eukaryotic translation initiation factor 2. J Virol 72:8620-6
He, B; Gross, M; Roizman, B (1998) The gamma134.5 protein of herpes simplex virus 1 has the structural and functional attributes of a protein phosphatase 1 regulatory subunit and is present in a high molecular weight complex with the enzyme in infected cells. J Biol Chem 273:20737-43
He, B; Gross, M; Roizman, B (1997) The gamma(1)34.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1alpha to dephosphorylate the alpha subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activa Proc Natl Acad Sci U S A 94:843-8
Picot, D; Loll, P J; Garavito, R M (1997) X-ray crystallographic study of the structure of prostaglandin H synthase. Adv Exp Med Biol 400A:107-11
Goldwasser, E (1996) Erythropoietin: a somewhat personal history. Perspect Biol Med 40:18-32

Showing the most recent 10 out of 62 publications