The goal of these studies is to determine the importance of specific phospholipid oxidation products, 1- palmitoyl-2-epoxyisoprostane-sn-glycero-3-phosphorylcholine (PEIPC) and 1-palmitoyl-2-oxovaleroyl-sn-glycero-3-phosphorylcholine (POVPC) as regulators of endothelial cell inflammatory responses. These phospholipids have been shown to increase monocyte-endothelial and inhibit neutrophil-endothelial interactions by non-classical signal transduction pathways. The in vivo importance of these phospholipids is suggested by their accumulation in atherosclerotic lesions and at other sites of chronic inflammation. We have identified candidate signal transduction pathways by which these bioactive lipids alter endothelial cell function and have obtained evidence for the involvement of more than one receptor in their effects on transcription of IL-8 and MCP-1 and monocyte binding. A major goal of this proposal is to complete identification of these receptors and signal transduction pathways.
In Aim 1 we will test the hypothesis that PEIPC binds to a receptor complex, composed of a GPI anchored protein and a modified form of Toll 4, which alters caveolar function. These caveolar changes are hypothesized to result in activation of Src and/or SREBP. As a result LEF and/or SREBP are translocated into the nucleus resulting in activation of IL-8 transcription. We have identified cAMP and its downstream effector R-Ras as important signals activating endothelial cells to bind monocytes.
In Aim 2 we will express both known and orphan lipid-binding G-protein coupled receptors to identify the PEIPC receptor mediating monocyte binding. The identified receptors will be overexpressed in mouse aorta, using adenovirai transfection, and their effect on fatty streak formation determined. We will also determine, using quantitative morphology and immunohistochemistry, if the proposed signal transduction pathways are altered in atherosclerosis.
In Aim 3 we will test the hypothesis that the accumulation of phosholipid oxidiation products at sites of inflammation blocks neutrophil entry. For these studies we will use cell culture and also a mouse model involving bacterial endopthalmitis. To test the role of oxidized phospholipid accumulation, we will over and underexpress PON-2, an enzyme that hydrolyzes these oxidized phospholipids. The proposed studies will determine the importance of POVPC and PEIPC as mediators of atherosclerosis and other chronic inflammatory processes.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL030568-22
Application #
7524229
Study Section
Special Emphasis Panel (ZHL1)
Project Start
Project End
Budget Start
2004-08-01
Budget End
2005-07-31
Support Year
22
Fiscal Year
2004
Total Cost
$307,176
Indirect Cost
Name
University of California Los Angeles
Department
Type
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Norheim, Frode; Bjellaas, Thomas; Hui, Simon T et al. (2018) Genetic, dietary, and sex-specific regulation of hepatic ceramides and the relationship between hepatic ceramides and IR. J Lipid Res 59:1164-1174
Yu, Jingyi; Seldin, Marcus M; Fu, Kai et al. (2018) Topological Arrangement of Cardiac Fibroblasts Regulates Cellular Plasticity. Circ Res 123:73-85
Jumabay, Medet; Zhumabai, Jiayinaguli; Mansurov, Nurlan et al. (2018) Combined effects of bone morphogenetic protein 10 and crossveinless-2 on cardiomyocyte differentiation in mouse adipocyte-derived stem cells. J Cell Physiol 233:1812-1822
Mangul, Serghei; Yang, Harry Taegyun; Strauli, Nicolas et al. (2018) ROP: dumpster diving in RNA-sequencing to find the source of 1 trillion reads across diverse adult human tissues. Genome Biol 19:36
Mack, Julia J; Iruela-Arispe, M Luisa (2018) NOTCH regulation of the endothelial cell phenotype. Curr Opin Hematol 25:212-218
Beceiro, Susana; Pap, Attila; Czimmerer, Zsolt et al. (2018) LXR nuclear receptors are transcriptional regulators of dendritic cell chemotaxis. Mol Cell Biol :
Sallam, Tamer; Jones, Marius; Thomas, Brandon J et al. (2018) Transcriptional regulation of macrophage cholesterol efflux and atherogenesis by a long noncoding RNA. Nat Med 24:304-312
Skye, Sarah M; Zhu, Weifei; Romano, Kymberleigh A et al. (2018) Microbial Transplantation With Human Gut Commensals Containing CutC Is Sufficient to Transmit Enhanced Platelet Reactivity and Thrombosis Potential. Circ Res 123:1164-1176
Lin, Liang-Yu; Chun Chang, Sunny; O'Hearn, Jim et al. (2018) Systems Genetics Approach to Biomarker Discovery: GPNMB and Heart Failure in Mice and Humans. G3 (Bethesda) 8:3499-3506
Rahmani, Elior; Schweiger, Regev; Shenhav, Liat et al. (2018) BayesCCE: a Bayesian framework for estimating cell-type composition from DNA methylation without the need for methylation reference. Genome Biol 19:141

Showing the most recent 10 out of 791 publications