The Morphology Core will provide comprehensive morphologic procedures and analyses for the 6 component Projects. All 6 component Projects will use .genetically defined and/or engineered mice that will require morphologic analyses. Thus, a core facility is needed to provide the highest quality, most efficient, and cost-effective morphologic services. By far, the most heavily used service of this Gore has been and will, be quantitative analyses of atherosclerotic lesions in the aorta and the innominate arteries of mice. However, a broad range of morphologic procedures are required by the 6 projects that include immunolabeling of tissues, labeling and analysis of cultured cells and isolated cells with fluorescent, probes for confocal microscopy, and histopathologic assessment of the aorta and innominate arteries, and in some cases other tissues, for the effects of gene manipulation in mice.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL030568-27
Application #
8048092
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2010-04-01
Budget End
2011-03-31
Support Year
27
Fiscal Year
2010
Total Cost
$237,965
Indirect Cost
Name
University of California Los Angeles
Department
Type
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Chattopadhyay, Arnab; Yang, Xinying; Mukherjee, Pallavi et al. (2018) Treating the Intestine with Oral ApoA-I Mimetic Tg6F Reduces Tumor Burden in Mouse Models of Metastatic Lung Cancer. Sci Rep 8:9032
Hui, Simon T; Kurt, Zeyneb; Tuominen, Iina et al. (2018) The Genetic Architecture of Diet-Induced Hepatic Fibrosis in Mice. Hepatology 68:2182-2196
Kang, Eun Yong; Lee, Cue Hyunkyu; Furlotte, Nicholas A et al. (2018) An Association Mapping Framework To Account for Potential Sex Difference in Genetic Architectures. Genetics 209:685-698
Seldin, Marcus M; Koplev, Simon; Rajbhandari, Prashant et al. (2018) A Strategy for Discovery of Endocrine Interactions with Application to Whole-Body Metabolism. Cell Metab 27:1138-1155.e6
Wang, Bo; Rong, Xin; Palladino, Elisa N D et al. (2018) Phospholipid Remodeling and Cholesterol Availability Regulate Intestinal Stemness and Tumorigenesis. Cell Stem Cell 22:206-220.e4
Kasahara, Kazuyuki; Krautkramer, Kimberly A; Org, Elin et al. (2018) Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model. Nat Microbiol 3:1461-1471
Lang, Jennifer M; Pan, Calvin; Cantor, Rita M et al. (2018) Impact of Individual Traits, Saturated Fat, and Protein Source on the Gut Microbiome. MBio 9:
McDonald, Austin I; Shirali, Aditya S; Aragón, Raquel et al. (2018) Endothelial Regeneration of Large Vessels Is a Biphasic Process Driven by Local Cells with Distinct Proliferative Capacities. Cell Stem Cell 23:210-225.e6
Roberts, Adam B; Gu, Xiaodong; Buffa, Jennifer A et al. (2018) Development of a gut microbe-targeted nonlethal therapeutic to inhibit thrombosis potential. Nat Med 24:1407-1417
Zhu, W; Buffa, J A; Wang, Z et al. (2018) Flavin monooxygenase 3, the host hepatic enzyme in the metaorganismal trimethylamine N-oxide-generating pathway, modulates platelet responsiveness and thrombosis risk. J Thromb Haemost 16:1857-1872

Showing the most recent 10 out of 791 publications