Efficient uptake and utilization of iron is essential to normal hematopoiesis. In mammals, dietary iron absorption is carried out by specialized enterocytes in the proximal small intestine. Iron is taken up through the apical transmembrane iron transport, DMT1, Homozygous mutant mice carrying a mutation in DMT1 are severely iron deficient and poorly viable. Until recently, it was not known host iron exists the basolateral surface of the enterocyte to reach the circulation. We recently identified a transmembrane protein, ferroportin1, which as an iron exporter. The ferroportin1 gene is defective in the zebrafish mutant weissherbst. Weissherbst embryos die from severe iron deficiency anemia, resulting from defective iron transport between the yolk sac and the developing embryo. The mammalian ortholog of ferroportin1 is expressed in the basolateral membrane of intestinal enterocytes, and at other sites requiring active iron expert. We hypothesize that ferroportin1 is the basolateral iron transporter in enterocytes and an iron exporter in other cell types In this grant we propose to study the conservation of vertebrate ferroportin1 function and the role of ferroportin1 in vivo. Gene targeting will be used to generate mice lacking ferroportin1 in selected tissues and these animals will be analyzed for defects in iron absorption and homeostasis. Ferroportin1 expression and activity will be analyzed in a panel of mouse mutants with defects in iron metabolism, and in a murine model of human hemochromatosis. Zebrafish studies will investigate the relationship between erythropoiesis and ferroportin1 by studying mRNA expression in known hematopoietic mutants. A mutagenesis screen will also be done to find zebrafish mutants with defects in ferroportin1 mRNA expression. Finally, we plan to do also be done to find zebrafish mutants with defects in ferroportin1 mRNA expression. Finally, we plan to do a suppressor-enhancer screen for ferroportin1 to define factors that genetically coordinate iron metabolism with ferroportin1 in the developing zebrafish embryo. Our findings will improve our understanding of vertebrate iron biology and may be relevant to human patients with iron deficiency and iron overload disorders.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
2P01HL032262-20
Application #
6492324
Study Section
Project Start
1983-01-01
Project End
2006-06-30
Budget Start
Budget End
Support Year
20
Fiscal Year
2001
Total Cost
$241,412
Indirect Cost
Name
Children's Hospital Boston
Department
Type
DUNS #
076593722
City
Boston
State
MA
Country
United States
Zip Code
02115
Liu, Nan; Hargreaves, Victoria V; Zhu, Qian et al. (2018) Direct Promoter Repression by BCL11A Controls the Fetal to Adult Hemoglobin Switch. Cell 173:430-442.e17
Whitman, Jared C; Paw, Barry H; Chung, Jacky (2018) The role of ClpX in erythropoietic protoporphyria. Hematol Transfus Cell Ther 40:182-188
Mandelbaum, Joseph; Shestopalov, Ilya A; Henderson, Rachel E et al. (2018) Zebrafish blastomere screen identifies retinoic acid suppression of MYB in adenoid cystic carcinoma. J Exp Med 215:2673-2685
Kapp, Friedrich G; Perlin, Julie R; Hagedorn, Elliott J et al. (2018) Protection from UV light is an evolutionarily conserved feature of the haematopoietic niche. Nature 558:445-448
Yamauchi, Takuji; Masuda, Takeshi; Canver, Matthew C et al. (2018) Genome-wide CRISPR-Cas9 Screen Identifies Leukemia-Specific Dependence on a Pre-mRNA Metabolic Pathway Regulated by DCPS. Cancer Cell 33:386-400.e5
Gehrke, Jason M; Cervantes, Oliver; Clement, M Kendell et al. (2018) An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities. Nat Biotechnol 36:977-982
Blaser, Bradley W; Zon, Leonard I (2018) Making HSCs in vitro: don't forget the hemogenic endothelium. Blood 132:1372-1378
Kafina, Martin D; Paw, Barry H (2018) Using the Zebrafish as an Approach to Examine the Mechanisms of Vertebrate Erythropoiesis. Methods Mol Biol 1698:11-36
Clement, Kendell; Farouni, Rick; Bauer, Daniel E et al. (2018) AmpUMI: design and analysis of unique molecular identifiers for deep amplicon sequencing. Bioinformatics 34:i202-i210
Liu, Frances D; Tam, Kimberley; Pishesha, Novalia et al. (2018) Improving hematopoietic recovery through modeling and modulation of the mesenchymal stromal cell secretome. Stem Cell Res Ther 9:268

Showing the most recent 10 out of 215 publications