In this competitive renewal application of the Program Program grant >30 yrs in existence, diverse approaches are used to address the singular theme of gene regulation in developing red blood cells. The Project Leaders are united in their commitment to the developing red cell as an experimental system in which to make fundamental biological discoveries that will inform our understanding of cell differentiation and directly impact our capacity to treat disorders of the red cell, including congenital and acquired anemias. The Program encompasses the most relevant vertebrate systems (human, mouse, and zebrafish) and employs contemporary genetic approaches, including gene modification using CRISPR/cas9 and innovative genetic screens. Deep, longstanding, and intensive interactions and collaborations among the Project Leaders ensures synergy in the accomplishment of the proposed goals of the research. Project 1 (S.H. Orkin, Project Leader) builds on prior groundbreaking work on the role of BCL11A in HbF repression and centers on the interaction of BCL11A and other transcription factors with the nuclear matrix, the turnover of BCL11A protein and the search for small molecules that destabilize the protein in erythroid cells, and cis-regulatory sites of BCL11A-binding in the human ?-globin cluster. In Project 2, H. Lodish (Project Leader) and his colleagues focus on the pathways by which self-renewal of red cell progenitors is controlled. Project 3 (L. Zon, Project Leader) addresses the role of transcription elongation in red cell gene expression and its intersections with signaling pathways. In Project 4 (D.E. Bauer, Project Leader), erythroid cell super-enhancer elements will be analyzed functionally with innovative CRISPR/cas9 saturating mutagenesis, an approach recently pioneered in the Program. In Project 5 (B. Paw, Project Leader), new genes/proteins involved in iron and heme metabolism will be characterized for their physiological roles in mouse/human/zebrafish systems. Each of the projects in this Program grant addresses critical aspects of the expression program and function of erythroid cells. These studies are founded on the premise that discoveries emerging from the proposed projects will provide new opportunities for the design of novel approaches to the understanding and management of red blood cell disorders, including the hemoglobinopathies (sickle cell disease and ?-thalassemia), other congenital anemias, and acquired conditions.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL032262-38
Application #
9924620
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Program Officer
Qasba, Pankaj
Project Start
1997-07-01
Project End
2022-03-31
Budget Start
2020-04-01
Budget End
2021-03-31
Support Year
38
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Boston Children's Hospital
Department
Type
DUNS #
076593722
City
Boston
State
MA
Country
United States
Zip Code
02115
Mandelbaum, Joseph; Shestopalov, Ilya A; Henderson, Rachel E et al. (2018) Zebrafish blastomere screen identifies retinoic acid suppression of MYB in adenoid cystic carcinoma. J Exp Med 215:2673-2685
Kapp, Friedrich G; Perlin, Julie R; Hagedorn, Elliott J et al. (2018) Protection from UV light is an evolutionarily conserved feature of the haematopoietic niche. Nature 558:445-448
Yamauchi, Takuji; Masuda, Takeshi; Canver, Matthew C et al. (2018) Genome-wide CRISPR-Cas9 Screen Identifies Leukemia-Specific Dependence on a Pre-mRNA Metabolic Pathway Regulated by DCPS. Cancer Cell 33:386-400.e5
Gehrke, Jason M; Cervantes, Oliver; Clement, M Kendell et al. (2018) An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities. Nat Biotechnol 36:977-982
Blaser, Bradley W; Zon, Leonard I (2018) Making HSCs in vitro: don't forget the hemogenic endothelium. Blood 132:1372-1378
Kafina, Martin D; Paw, Barry H (2018) Using the Zebrafish as an Approach to Examine the Mechanisms of Vertebrate Erythropoiesis. Methods Mol Biol 1698:11-36
Clement, Kendell; Farouni, Rick; Bauer, Daniel E et al. (2018) AmpUMI: design and analysis of unique molecular identifiers for deep amplicon sequencing. Bioinformatics 34:i202-i210
Liu, Frances D; Tam, Kimberley; Pishesha, Novalia et al. (2018) Improving hematopoietic recovery through modeling and modulation of the mesenchymal stromal cell secretome. Stem Cell Res Ther 9:268
Huang, Nai-Jia; Lin, Ying-Cing; Lin, Chung-Yueh et al. (2018) Enhanced phosphocholine metabolism is essential for terminal erythropoiesis. Blood 131:2955-2966
Schoonenberg, Vivien A C; Cole, Mitchel A; Yao, Qiuming et al. (2018) CRISPRO: identification of functional protein coding sequences based on genome editing dense mutagenesis. Genome Biol 19:169

Showing the most recent 10 out of 215 publications