The goal of this project is to develop hematopoietic stem cell gene therapy for diseases affecting the hematopoietic system. A recent study in children with X-linked serve combined immunodeficiency has shown the successful application of hematopoietic stem cell gene therapy. While these results were very encouraging for the gene therapy field, most genetic diseases do not have selective advantages for gene-corrected cells, and are therefore not likely to be cured by currently available techniques. Further improvements in gene transfer efficiency and in the engraftment of transduced cells using less toxic non-myeloablative conditioning regimens will be required. We have used the dog model to study gene transfer into hematopoietic repopulating cells because of our long-standing experience with hematopoietic stem cell transplantation in this model and because of the availability of disease models. During the previous funding period, we have improved gene transfer into hematopoietic repopulating cells by (1) using a gibbon ape leukemia virus (GALV) envelope, (2) transducing CD34-enriched cells in flasks coated with the human fibronectin fragments CH-296, and (3) using a growth factor combination which included canine stem cell factor (cSCF), canine granulocyte-colony stimulating factor (cG-CSF) and human FLT3-L. Although gene marking, especially in a non-myeloablative setting. Thus our objectives for this project are threefold. First, in Specific Aims 1-3, we propose to study techniques to further improve gene transfer rates in hematopoietic stem cells. Second, Specific Aims 4 and 5 will explore less toxic conditioning regimens in combination with immunosuppression and also investigate a novel in vivo selection system. Third, Specific Aims 6 and 7 will apply gene transfer techniques to disease models. Fanconi anemia has been chosen as the first target for hematopoietic stem cell gene therapy since gene-corrected stem cells in this disorder are thought to have a selective advantage over uncorrected stem cells.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
2P01HL036444-21
Application #
6492854
Study Section
Project Start
1985-07-01
Project End
2006-07-31
Budget Start
Budget End
Support Year
21
Fiscal Year
2001
Total Cost
Indirect Cost
Name
Fred Hutchinson Cancer Research Center
Department
Type
DUNS #
075524595
City
Seattle
State
WA
Country
United States
Zip Code
98109
McCune, Jeannine S; Storer, Barry; Thomas, Sushma et al. (2018) Inosine Monophosphate Dehydrogenase Pharmacogenetics in Hematopoietic Cell Transplantation Patients. Biol Blood Marrow Transplant 24:1802-1807
Thakar, M S; Bonfim, C; Walters, M C et al. (2017) Dose-adapted post-transplant cyclophosphamide for HLA-haploidentical transplantation in Fanconi anemia. Bone Marrow Transplant 52:570-573
Burroughs, Lauri M; Shimamura, Akiko; Talano, Julie-An et al. (2017) Allogeneic Hematopoietic Cell Transplantation Using Treosulfan-Based Conditioning for Treatment of Marrow Failure Disorders. Biol Blood Marrow Transplant 23:1669-1677
Vaughn, J E; Anwer, F; Deeg, H J (2016) Treatment of refractory ITP and Evans syndrome by haematopoietic cell transplantation: is it indicated, and for whom? Vox Sang 110:5-11
Aki, S Z; Inamoto, Y; Carpenter, P A et al. (2016) Confounding factors affecting the National Institutes of Health (NIH) chronic Graft-Versus-Host Disease Organ-Specific Score and global severity. Bone Marrow Transplant 51:1350-1353
Khera, Nandita; Gooley, Ted; Flowers, Mary E D et al. (2016) Association of Distance from Transplantation Center and Place of Residence on Outcomes after Allogeneic Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant 22:1319-1323
Karoopongse, Ekapun; Marcondes, A Mario; Yeung, Cecilia et al. (2016) Disruption of Iron Regulation after Radiation and Donor Cell Infusion. Biol Blood Marrow Transplant 22:1173-1181
Hoffmeister, P A; Storer, B E; Syrjala, K L et al. (2016) Physician-diagnosed depression and suicides in pediatric hematopoietic cell transplant survivors with up to 40 years of follow-up. Bone Marrow Transplant 51:153-6
Gallo, S; Woolfrey, A E; Burroughs, L M et al. (2016) Marrow grafts from HLA-identical siblings for severe aplastic anemia: does limiting the number of transplanted marrow cells reduce the risk of chronic GvHD? Bone Marrow Transplant 51:1573-1578
Festuccia, Moreno; Deeg, H Joachim; Gooley, Theodore A et al. (2016) Minimal Identifiable Disease and the Role of Conditioning Intensity in Hematopoietic Cell Transplantation for Myelodysplastic Syndrome and Acute Myelogenous Leukemia Evolving from Myelodysplastic Syndrome. Biol Blood Marrow Transplant 22:1227-1233

Showing the most recent 10 out of 788 publications