Introduction The goals of this core facility are to serve all of the investigators and projects within this Program Project in three major areas: 1. Provide heart catheterization, treadmill stress exercise performance, and telemetric hemodynamic monitoring for detailed physiologic characterization, as well as transthoracic echocardiography, magnetic resonance imaging and iodinated contrast microangiography for functional cardiac morphology, of genetically engineered murine models of cardiovascular disease. 2. Apply microsurgical methods in mice for inducing a pressure overload on either the left or right ventricle, or to produce myocardial infarction, in order to induce ventricular remodeling with hypertrophy or heart failure. 3. Induce high efficiency in vivo cardiac gene transfer in mice, where needed, to assess individual gene function.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL046345-20
Application #
8316264
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
2014-06-30
Budget Start
2011-07-01
Budget End
2013-06-30
Support Year
20
Fiscal Year
2011
Total Cost
$310,718
Indirect Cost
Name
University of California San Diego
Department
Type
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Dewan, Sukriti; McCabe, Kimberly J; Regnier, Michael et al. (2016) Molecular Effects of cTnC DCM Mutations on Calcium Sensitivity and Myofilament Activation-An Integrated Multiscale Modeling Study. J Phys Chem B 120:8264-75
Peter, Angela K; Bradford, William H; Dalton, Nancy D et al. (2016) Increased Echogenicity and Radiodense Foci on Echocardiogram and MicroCT in Murine Myocarditis. PLoS One 11:e0159971
Sheikh, Farah; Lyon, Robert C; Chen, Ju (2015) Functions of myosin light chain-2 (MYL2) in cardiac muscle and disease. Gene 569:14-20
Israeli-Rosenberg, Sharon; Chen, Chao; Li, Ruixia et al. (2015) Caveolin modulates integrin function and mechanical activation in the cardiomyocyte. FASEB J 29:374-84
Stroud, Matthew J; Banerjee, Indroneal; Veevers, Jennifer et al. (2014) Linker of nucleoskeleton and cytoskeleton complex proteins in cardiac structure, function, and disease. Circ Res 114:538-48
Zemljic-Harpf, Alice E; Godoy, Joseph C; Platoshyn, Oleksandr et al. (2014) Vinculin directly binds zonula occludens-1 and is essential for stabilizing connexin-43-containing gap junctions in cardiac myocytes. J Cell Sci 127:1104-16
Lyon, Robert C; Mezzano, Valeria; Wright, Adam T et al. (2014) Connexin defects underlie arrhythmogenic right ventricular cardiomyopathy in a novel mouse model. Hum Mol Genet 23:1134-50
Pfeiffer, E R; Wright, A T; Edwards, A G et al. (2014) Caveolae in ventricular myocytes are required for stretch-dependent conduction slowing. J Mol Cell Cardiol 76:265-74
Bang, Marie-Louise; Gu, Yusu; Dalton, Nancy D et al. (2014) The muscle ankyrin repeat proteins CARP, Ankrd2, and DARP are not essential for normal cardiac development and function at basal conditions and in response to pressure overload. PLoS One 9:e93638
Israeli-Rosenberg, Sharon; Manso, Ana Maria; Okada, Hideshi et al. (2014) Integrins and integrin-associated proteins in the cardiac myocyte. Circ Res 114:572-586

Showing the most recent 10 out of 144 publications