Electrical remodeling describes the electrophysiological changes occurring in chronic cardiac diseases associated with an increased susceptibility to arrhythmias. Changes reflecting remodeling in readily measured electrophysiologic characteristics (action potential duration, individual ionic currents) have been observed in large animal models with arrhythmias closely resembling those in humans. In the dog model of chronic complete AV block (CAVB), biventricular hypertrophy occurs along with substantial increases in action potential duration that render the animals prone to developing Torsades de Pointes during exposure to QT-prolonging antiarrhythmic agents. Similarly in chronic atrial fibrillation (both human and various pacing-induced animal models), atrial electrical remodeling produces a cellular substrate that perpetuates the arrhythmia (?atrial fibrillation begets atrial fibrillation?). Evidence points to long term changes in gene expression as an important element in the genesis of these arrhythmia prone states. However, our knowledge of the identity and temporal sequence of changes in gene expression underlying these two conditions is rudimentary. In this Project, we will use microarray technology to survey global patterns of transcriptional remodeling in dog hearts that occur following chronic AV block and with pacing-induced atrial fibrillation. This work requires that we develop a gene array from a panel of canine expressed sequence tags that we have started to collect. Development of a canine microarray will enable us to examine changes in gene expression in hypertrophied ventricular myocardium of CAVB dogs and assess differences between subgroups of animals that exhibit susceptibility or resistance to drug-induced Torsade de Pointes. We will also be able to characterize the transcriptional remodeling in atrial myocardium associated with induction of atrial fibrillation in dogs subjected to rapid atrial pacing. Robust statistical analyses of microarray data will be used to direct appropriate validation experiments using separate methods. These studies will provide new insights into the pathogenesis of arrhythmia susceptibility and contribute to identifying potential new targets for therapeutic interventions.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
2P01HL046681-11
Application #
6652901
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
2002-08-01
Project End
2007-07-31
Budget Start
2002-08-01
Budget End
2003-07-31
Support Year
11
Fiscal Year
2002
Total Cost
$161,237
Indirect Cost
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Yang, Tao; Smith, Jarrod A; Leake, Brenda F et al. (2013) An allosteric mechanism for drug block of the human cardiac potassium channel KCNQ1. Mol Pharmacol 83:481-9
Hayashi, Kenshi; Shuai, Wen; Sakamoto, Yuichiro et al. (2010) Trafficking-competent KCNQ1 variably influences the function of HERG long QT alleles. Heart Rhythm 7:973-80
Yang, Tao; McBride, Brian F; Leake, Brenda F et al. (2010) Modulation of drug block of the cardiac potassium channel KCNA5 by the drug transporters OCTN1 and MDR1. Br J Pharmacol 161:1023-33
Stepanovic, Svetlana Z; Potet, Franck; Petersen, Christina I et al. (2009) The evolutionarily conserved residue A653 plays a key role in HERG channel closing. J Physiol 587:2555-66
Yang, Tao; Chung, Seo-Kyung; Zhang, Wei et al. (2009) Biophysical properties of 9 KCNQ1 mutations associated with long-QT syndrome. Circ Arrhythm Electrophysiol 2:417-26
Potet, Franck; Petersen, Christina I; Boutaud, Olivier et al. (2009) Genetic screening in C. elegans identifies rho-GTPase activating protein 6 as novel HERG regulator. J Mol Cell Cardiol 46:257-67
Yang, Tao; Kanki, Hideaki; Zhang, Wei et al. (2009) Probing the mechanisms underlying modulation of quinidine sensitivity to cardiac I(Ks) block by protein kinase A-mediated I(Ks) phosphorylation. Br J Pharmacol 157:952-61
Grueter, Chad E; Abiria, Sunday A; Wu, Yunji et al. (2008) Differential regulated interactions of calcium/calmodulin-dependent protein kinase II with isoforms of voltage-gated calcium channel beta subunits. Biochemistry 47:1760-7
Baudenbacher, Franz; Schober, Tilmann; Pinto, Jose Renato et al. (2008) Myofilament Ca2+ sensitization causes susceptibility to cardiac arrhythmia in mice. J Clin Invest 118:3893-903
Makita, Naomasa; Behr, Elijah; Shimizu, Wataru et al. (2008) The E1784K mutation in SCN5A is associated with mixed clinical phenotype of type 3 long QT syndrome. J Clin Invest 118:2219-29

Showing the most recent 10 out of 171 publications