Vanderbilt University has established a state-of-the-art microarray facility that is presently supported by the Vanderbilt-Ingram Cancer Center, the Diabetes Center and the Vanderbilt NIDDK Biotechnology Center. This facility provides high quality microarray production, hybridization and data analysis for members of these research centers. Core B will enable Program investigators access to the full spectrum of advanced technologies offered by this resource. Projects 0010, 0011 and 0013 will utilize Core B for proposed experiments aimed at revealing changes in gene expression associated with arrhythmia susceptibility. In Project 0010, experiments have been outlined to compare gene expression patterns between mice expressing a CaM Kinase II inhibitory peptide or control peptide in heart in experimental cardiomyopathies. These experiments seek knowledge of the role of CaMKII and its upstream and downstream regulators on molecular pathways leading to cardiac failure and arrhythmias. Project 0011 will utilize microarray experiments to study an in vitro cell culture system for examining electrical remodeling in atrial myocytes subjected to rapid pacing, with the goal of identifying early molecular changes contributing to an atrial fibrillation-susceptible phenotype. Project 0013 has developed a novel molecular resource, a canine expressed sequence tag (EST) collection from heart, that will be used to develop gene arrays to be applied initially to dog models of susceptibility to arrhythmias closely resembling human disease. Core B consists of two main critical elements: (1) microarray production and hybridization; and (2) data acquisition and analysis. Both elements operate with state-of-the-art technological and computational tools that guarantee superior quality and reliability in microarray experiments. The Core will support the salaries of key personnel needed for operating the core, equipment and other infrastructure costs that enable expansion of existing services, and support for expertise in analysis of the data that emerge from microarray experiments.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL046681-14
Application #
7103453
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2005-08-01
Budget End
2006-07-31
Support Year
14
Fiscal Year
2005
Total Cost
$175,005
Indirect Cost
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Yang, Tao; Smith, Jarrod A; Leake, Brenda F et al. (2013) An allosteric mechanism for drug block of the human cardiac potassium channel KCNQ1. Mol Pharmacol 83:481-9
Hayashi, Kenshi; Shuai, Wen; Sakamoto, Yuichiro et al. (2010) Trafficking-competent KCNQ1 variably influences the function of HERG long QT alleles. Heart Rhythm 7:973-80
Yang, Tao; McBride, Brian F; Leake, Brenda F et al. (2010) Modulation of drug block of the cardiac potassium channel KCNA5 by the drug transporters OCTN1 and MDR1. Br J Pharmacol 161:1023-33
Potet, Franck; Petersen, Christina I; Boutaud, Olivier et al. (2009) Genetic screening in C. elegans identifies rho-GTPase activating protein 6 as novel HERG regulator. J Mol Cell Cardiol 46:257-67
Yang, Tao; Kanki, Hideaki; Zhang, Wei et al. (2009) Probing the mechanisms underlying modulation of quinidine sensitivity to cardiac I(Ks) block by protein kinase A-mediated I(Ks) phosphorylation. Br J Pharmacol 157:952-61
Stepanovic, Svetlana Z; Potet, Franck; Petersen, Christina I et al. (2009) The evolutionarily conserved residue A653 plays a key role in HERG channel closing. J Physiol 587:2555-66
Yang, Tao; Chung, Seo-Kyung; Zhang, Wei et al. (2009) Biophysical properties of 9 KCNQ1 mutations associated with long-QT syndrome. Circ Arrhythm Electrophysiol 2:417-26
Grueter, Chad E; Abiria, Sunday A; Wu, Yunji et al. (2008) Differential regulated interactions of calcium/calmodulin-dependent protein kinase II with isoforms of voltage-gated calcium channel beta subunits. Biochemistry 47:1760-7
Baudenbacher, Franz; Schober, Tilmann; Pinto, Jose Renato et al. (2008) Myofilament Ca2+ sensitization causes susceptibility to cardiac arrhythmia in mice. J Clin Invest 118:3893-903
Makita, Naomasa; Behr, Elijah; Shimizu, Wataru et al. (2008) The E1784K mutation in SCN5A is associated with mixed clinical phenotype of type 3 long QT syndrome. J Clin Invest 118:2219-29

Showing the most recent 10 out of 171 publications