The pathogenesis of the anemia of prematurity is incompletely understood. Although preterm infants possess storage iron (Fe), it is uncertain that they can mobilize Fe from storage rapidly enough for erythropoiesis to proceed at a rate commensurate with growth. Preterm infants receive protein intakes that are less than the requirements. Hence, protein deficiency may be a causative factor in anemia. The overall hypothesis of this proposal is that availability of Fe and/or protein deficiency limit RBC formation in preterm infants and that optimization of Fe availability or of protein intake will result in clinically relevant enhancement of erythropoiesis and amelioration of anemia which, in turn, may lead to a reduction of the need for RBC transfusions. Of the six Specific Aims, four will be pursued in clinical and two in animal studies.
Aim #1 will test the hypothesis that, by raising oral Fe intake from the current routine level to one of two higher levels, enhancement of erythropoiesis and improvement of Fe nutritional status will be achieved, without incurring toxic effects. To determine quantitatively Fe absorption and utilization at these higher Fe intakes, absorption and RBC incorporation of Fe will be determined with use of the non-radioactive isotope, 58Fe. In another subset, we will examine the effect of RBC transfusion on Fe absorption and/or excretion. Evidence of free radical damage will be obtained at all levels of Fe intake.
Aim #2 will test the hypothesis that provision of protein intakes that match estimated requirements more closely than current routine feedings will enhance erythropoiesis, leading to improved growth.
Aim #3 will test the hypothesis that treatment with r- HuEpo and Fe leads to a shortening of RBC life span and/or to an expansion of RBC mass or blood volume.
This aim i ntends to clarify observation made during a previous study suggesting that such adverse effects do occur during r-HuEPO and Fe treatment. Parental administration of Fe may offer substantial advantages over enteral administration, but is potentially more toxic.
Specific Aim #4 will test the hypothesis that slow infusion of Fe to preterm infants leads to greater RBC incorporation of 58Fe than more rapid infusion. Newborn anemic lambs will be used in Aim #5 to test the hypothesis that intravenous Fe stimulates erythropoiesis when given alone or in combination with r-HuEPO.
Aim #6 will test the hypothesis that intravenous Fe stimulates erythropoiesis.
Aims #4, 5 and 6, if successful, will provide the basis for future clinical trials of parenterally administered Fe in human infants.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
2P01HL046925-06A1
Application #
6110099
Study Section
Project Start
1999-04-01
Project End
2000-03-31
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
6
Fiscal Year
1999
Total Cost
Indirect Cost
Name
University of Iowa
Department
Type
DUNS #
041294109
City
Iowa City
State
IA
Country
United States
Zip Code
52242
Benavides, Amanda; Metzger, Andrew; Tereshchenko, Alexander et al. (2018) Sex-specific alterations in preterm brain. Pediatr Res :
Mock, Donald M; Nalbant, Demet; Kyosseva, Svetlana V et al. (2018) Development, validation, and potential applications of biotinylated red blood cells for posttransfusion kinetics and other physiological studies: evidenced-based analysis and recommendations. Transfusion 58:2068-2081
Sparger, Katherine A; Ramsey, Haley; Lorenz, Viola et al. (2018) Developmental differences between newborn and adult mice in response to romiplostim. Platelets 29:365-372
Patel, Ravi M; Josephson, Cassandra D; Shenvi, Neeta et al. (2018) Platelet transfusions and mortality in necrotizing enterocolitis. Transfusion :
Teramo, Kari A; Klemetti, Miira M; Widness, John A (2018) Robust increases in erythropoietin production by the hypoxic fetus is a response to protect the brain and other vital organs. Pediatr Res :
Cakir, Bertan; Liegl, Raffael; Hellgren, Gunnel et al. (2018) Thrombocytopenia is associated with severe retinopathy of prematurity. JCI Insight 3:
Nalbant, Demet; Cancelas, José A; Mock, Donald M et al. (2018) In premature infants there is no decrease in 24-hour posttransfusion allogeneic red blood cell recovery after 42 days of storage. Transfusion 58:352-358
Bastian, T W; Duck, K A; Michalopoulos, G C et al. (2017) Eltrombopag, a thrombopoietin mimetic, crosses the blood-brain barrier and impairs iron-dependent hippocampal neuron dendrite development. J Thromb Haemost 15:565-574
An, Guohua; Ohls, Robin K; Christensen, Robert D et al. (2017) Population Pharmacokinetics of Darbepoetin in Infants Following Single Intravenous and Subcutaneous Dosing. J Pharm Sci 106:1644-1649
Lorenz, Viola; Ramsey, Haley; Liu, Zhi-Jian et al. (2017) Developmental Stage-Specific Manifestations of Absent TPO/c-MPL Signalling in Newborn Mice. Thromb Haemost 117:2322-2333

Showing the most recent 10 out of 197 publications