This application is a competitive renewal of our previous Program Project Grant (PPG) entitled """"""""Neonatal Anemia: Pathophysiology and Treatment."""""""" The renewal is based on hypotheses developed from findings of the original PPG plus new tissues arising in neonatal hematology and transfusion medicine. Although all objectives of the original PPG have been achieve with progress reported (512 manuscripts published, 7 submitted for review, and 15 in preparation), it is important to continue studies of neonatal anemia in a PPG setting because: 1) medical science has yet to achieve a comprehensive understanding of the physiology of neonatal erythropoiesis and the pathophysiology of the anemia of prematurity; and 2) severe, transfusion-dependent anemia continues to be a problem faced daily by preterm infants-for which the efficacy, toxicity and optimal use of therapies are not clearly defined. The theme of our PPG is to optimize management of neonatal anemia- particularly, severe anemia in preterm infants that requires red blood cell (RBC) transfusions. Two strategic goals and eight objectives will be met by three projects and a core. To optimize use of recombinant human erythropoietin (EPO) in treating neonatal anemia. Project #1 will continue to investigate the physiology, pharmacokinetics (PK) and pharmacodynamics (PD) of EPO-utilizing novel methods that employ biotinylated EPO. To investigate the role of iron (Fe) availability and protein nutrition in the pathophysiology of the anemia of prematurity and to define their requirements in treating and possibly preventing neonatal anemia, Project #2 will investigate the effect of protein and graded oral Fe intakes on erythropoiesis, the effects of RBC transfusions and EPO on Fe therapy, and the efficacy and safety of intravenous Fe therapy. To determine the benefits of autologous placental blood transfusions containing mature RBCs and hematopoietic/immunologic progenitor cells, Project #3 will study the effects of delayed umbilical cord clamping or the equivalent transfusions of placental blood on maintaining neonatal blood and RBC volumes and hematopoietic/immunological development. The Core will provide administrative, statistical and research support and biotinylation laboratory services to all projects. To accomplish these goals, additional investigators, with expertise in new areas, have been recruited to complement the ongoing efforts of our established PPG group.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL046925-08
Application #
6389178
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Program Officer
Nemo, George J
Project Start
1992-07-01
Project End
2004-03-31
Budget Start
2001-04-01
Budget End
2002-03-31
Support Year
8
Fiscal Year
2001
Total Cost
$1,484,307
Indirect Cost
Name
University of Iowa
Department
Pathology
Type
Schools of Medicine
DUNS #
041294109
City
Iowa City
State
IA
Country
United States
Zip Code
52242
Benavides, Amanda; Metzger, Andrew; Tereshchenko, Alexander et al. (2018) Sex-specific alterations in preterm brain. Pediatr Res :
Mock, Donald M; Nalbant, Demet; Kyosseva, Svetlana V et al. (2018) Development, validation, and potential applications of biotinylated red blood cells for posttransfusion kinetics and other physiological studies: evidenced-based analysis and recommendations. Transfusion 58:2068-2081
Sparger, Katherine A; Ramsey, Haley; Lorenz, Viola et al. (2018) Developmental differences between newborn and adult mice in response to romiplostim. Platelets 29:365-372
Patel, Ravi M; Josephson, Cassandra D; Shenvi, Neeta et al. (2018) Platelet transfusions and mortality in necrotizing enterocolitis. Transfusion :
Teramo, Kari A; Klemetti, Miira M; Widness, John A (2018) Robust increases in erythropoietin production by the hypoxic fetus is a response to protect the brain and other vital organs. Pediatr Res :
Cakir, Bertan; Liegl, Raffael; Hellgren, Gunnel et al. (2018) Thrombocytopenia is associated with severe retinopathy of prematurity. JCI Insight 3:
Nalbant, Demet; Cancelas, José A; Mock, Donald M et al. (2018) In premature infants there is no decrease in 24-hour posttransfusion allogeneic red blood cell recovery after 42 days of storage. Transfusion 58:352-358
Bastian, T W; Duck, K A; Michalopoulos, G C et al. (2017) Eltrombopag, a thrombopoietin mimetic, crosses the blood-brain barrier and impairs iron-dependent hippocampal neuron dendrite development. J Thromb Haemost 15:565-574
An, Guohua; Ohls, Robin K; Christensen, Robert D et al. (2017) Population Pharmacokinetics of Darbepoetin in Infants Following Single Intravenous and Subcutaneous Dosing. J Pharm Sci 106:1644-1649
Lorenz, Viola; Ramsey, Haley; Liu, Zhi-Jian et al. (2017) Developmental Stage-Specific Manifestations of Absent TPO/c-MPL Signalling in Newborn Mice. Thromb Haemost 117:2322-2333

Showing the most recent 10 out of 197 publications