The general theme of Project 2 is improved therapy for Fanconi Anemia patients. In addition to the testing of novel non-viral gene transfer methods and the development of improved murine models, the role of telomere shortening in the evolution of clinical disease will be examined. The successful use of bone marrow transplantation in FA makes gene therapy directed at hematopoietic stem cellS (HSC) a viable approach for the treatment of hematological disease. Unforttmately, the stem cells of FA patients are both scarce and fragile, making standard gene therapy approaches difficult and establishing the need for alternate approaches. In addition, no interventions currently exist for the non-hematological manifestations of FA, particutarly solid tumors which occur late in the course of the disease. Improved murme models of FA now make it possible to test small molecules with the potential to delay cancer. Novel gene therapy methods will be tested in Aims l (Sleeping Beauty transposon) and 2 (phi C31 phage integrase).
Aim 3 will test multiple Compounds for their ability to prevent or delay tumors in FA knockout mice (cancer chemoprevention). Finally, Aim 4 is directed at improving murine models of FA and exploring the role of telomere shortening in the pathophysiology of FA.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
2P01HL048546-11
Application #
6973396
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
2004-07-01
Project End
2009-06-30
Budget Start
2004-07-01
Budget End
2005-06-30
Support Year
11
Fiscal Year
2004
Total Cost
$295,969
Indirect Cost
Name
Oregon Health and Science University
Department
Type
DUNS #
096997515
City
Portland
State
OR
Country
United States
Zip Code
97239
Whiteaker, Jeffrey R; Zhao, Lei; Ivey, Richard G et al. (2018) Targeted mass spectrometry enables robust quantification of FANCD2 mono-ubiquitination in response to DNA damage. DNA Repair (Amst) 65:47-53
Kroeger Jr, Paul T; Drummond, Bridgette E; Miceli, Rachel et al. (2017) The zebrafish kidney mutant zeppelin reveals that brca2/fancd1 is essential for pronephros development. Dev Biol 428:148-163
Rondinelli, Beatrice; Gogola, Ewa; YĆ¼cel, Hatice et al. (2017) EZH2 promotes degradation of stalled replication forks by recruiting MUS81 through histone H3 trimethylation. Nat Cell Biol 19:1371-1378
Karras, Georgios I; Yi, Song; Sahni, Nidhi et al. (2017) HSP90 Shapes the Consequences of Human Genetic Variation. Cell 168:856-866.e12
Mouw, Kent W; Goldberg, Michael S; Konstantinopoulos, Panagiotis A et al. (2017) DNA Damage and Repair Biomarkers of Immunotherapy Response. Cancer Discov 7:675-693
Garbati, Michael R; Hays, Laura E; Rathbun, R Keaney et al. (2016) Cytokine overproduction and crosslinker hypersensitivity are unlinked in Fanconi anemia macrophages. J Leukoc Biol 99:455-65
Zhang, Qing-Shuo; Tang, Weiliang; Deater, Matthew et al. (2016) Metformin improves defective hematopoiesis and delays tumor formation in Fanconi anemia mice. Blood 128:2774-2784
Zhang, Haojian; Kozono, David E; O'Connor, Kevin W et al. (2016) TGF-? Inhibition Rescues Hematopoietic Stem Cell Defects and Bone Marrow Failure in Fanconi Anemia. Cell Stem Cell 18:668-81
Zhang, Qing-Shuo; Benedetti, Eric; Deater, Matthew et al. (2015) Oxymetholone therapy of fanconi anemia suppresses osteopontin transcription and induces hematopoietic stem cell cycling. Stem Cell Reports 4:90-102
Lombardi, Anne J; Hoskins, Elizabeth E; Foglesong, Grant D et al. (2015) Acquisition of Relative Interstrand Crosslinker Resistance and PARP Inhibitor Sensitivity in Fanconi Anemia Head and Neck Cancers. Clin Cancer Res 21:1962-72

Showing the most recent 10 out of 106 publications