Core D will provide support for histochemical and immunofluorescence microscopy of vascular and adipose tissues prepared from the various mouse preparations being generated in this Program. Morphological analyses will focus on analyzing tissue markers of vascular inflammation and redox stress using histochemical and immunofluorescence approaches, as well as serum, measurements of cytokines, lipoproteins, and fatty acids. Specific experiments planned with support from Core D are presented in the individual project descriptions. Core D also will provide centralized collection, processing, and quantitative analysis of biomarkers of oxidative stress and inflammation of tissue specimens for the individual projects. This facility will primarily use histopathological, microscopic, and biochemical approaches. The quantification and characterization of this vascular disease will build on our extensive experience in analysis of both human tissue specimens, particularly atheromata, and Murine models of atherosclerosis, aortic aneurysms, and obesity. During its 15 year life, this core of our program project has built a tissue bank of more than 800 human atherosclerotic specimens preserved for a variety of analytic techniques, and quality controlled. Retrospective quality control of specimens was routinely performed by Eugenia Shvartz under supervision of Dr. Sukhova, according to a formal manual of operations. Two to four samples per year (1994 - 1999) will be used for quality immunostaining for macrophages, SMC, and endothelial cells. Recent test revealed perfect preservation and quality of cryosections obtained from 2000 -2006. Protein extracted from tissue samples snap frozen in 2000, 2001, 2004, 2005, and 2007 showed similar yield, 5.5 -11pg/mg of dry weight independently of storage time (- 80?C). This core will also measure several plasma components integral to the experimental design of the majority of projects. Over its life, this core has supported more than one hundred of publications.
Showing the most recent 10 out of 266 publications