The etiologies of late hypertrophy and heart failure are extremely complex but altered cellular calcium regulation appears to be a final common cause in both arrhythmogenesis and contractile dysfunction. The SR Ca2+-ATPase (SERCA) and sarcolemmal Na+-Ca2+ exchanger (NCX1) are two major transporters responsible for reducing [Ca2+]i to a low resting level during relaxation. SERCA expression and activity are decreased in hypertrophy and failure and we and others have shown that expression and activity in NCX1 is increased in this situation. Recent reports have demonstrated that upregulation of the exchanger appears to be a critical link between contractile dysfunction and arrhythmogenesis. Additional studies have documented the cardio-protective effect resulting from inhibition of calcium influx via NCX1 in ischemia/reperfusion, digitalis toxicity and atrial fibrillation-induced shortening of atrial refractiveness. So far these results are solely based on acute studies and do not address long-term treatment. We discovered that inhibition of NCX1 calcium influx pathway (reverse mode) either by KB-R7943 or by lowering [Ca2+]o, resulted in the activation of signaling factors that leads to specific upregulation of the exchanger gene. This novel and exciting finding should have a profound impact on potential long-term treatment and places regulation of exchanger activity in a whole new light. The exchanger, whose activity is acutely sensitive to [Ca2+]o, [Ca2+]i, [Na+]i, and membrane potential (Em), may also act as a cellular rheostat that plays a role in the modulation of specific signal transduction pathways. Our hypothesis is that alteration of exchanger activity can directly activate signal transduction pathways resulting in changes in exchanger gene expression. This will be tested through the following aims: 1) Determine that the KBR induced activation of p38 and upregulation of NCX1 is directly mediated by the exchanger. 2) Determine whether changes in exchanger activity transduce the activation of signaling pathways by direct interaction or via changes in [Ca2+]i. 3) Identify factors interacting directly with the exchanger that mediate the activation of p38. 4) Identify the downstream factors in the signaling pathway mediating p38 activation. This work will allow us to better understand the role that exchanger activity plays in failure and provide a framework for therapeutic development.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
2P01HL048788-11
Application #
6808221
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
2003-08-01
Project End
2008-07-31
Budget Start
2003-08-01
Budget End
2004-07-31
Support Year
11
Fiscal Year
2003
Total Cost
$160,765
Indirect Cost
Name
Medical University of South Carolina
Department
Type
DUNS #
183710748
City
Charleston
State
SC
Country
United States
Zip Code
29425
Palanisamy, Arun P; Suryakumar, Geetha; Panneerselvam, Kavin et al. (2015) A Kinase-Independent Function of c-Src Mediates p130Cas Phosphorylation at the Serine-639 Site in Pressure Overloaded Myocardium. J Cell Biochem 116:2793-803
McDermott, Paul J; Baicu, Catalin F; Wahl, Shaun R et al. (2012) In vivo measurements of the contributions of protein synthesis and protein degradation in regulating cardiac pressure overload hypertrophy in the mouse. Mol Cell Biochem 367:205-13
Baicu, Catalin F; Li, Jiayu; Zhang, Yuhua et al. (2012) Time course of right ventricular pressure-overload induced myocardial fibrosis: relationship to changes in fibroblast postsynthetic procollagen processing. Am J Physiol Heart Circ Physiol 303:H1128-34
Mukherjee, Rupak; Snipes, Jonathan M; Saunders, Stuart M et al. (2012) Discordant activation of gene promoters for matrix metalloproteinases and tissue inhibitors of the metalloproteinases following myocardial infarction. J Surg Res 172:59-67
Baicu, Catalin F; Zhang, Yuhua; Van Laer, An O et al. (2012) Effects of the absence of procollagen C-endopeptidase enhancer-2 on myocardial collagen accumulation in chronic pressure overload. Am J Physiol Heart Circ Physiol 303:H234-40
McCurdy, Sarah M; Dai, Qiuxia; Zhang, Jianhua et al. (2011) SPARC mediates early extracellular matrix remodeling following myocardial infarction. Am J Physiol Heart Circ Physiol 301:H497-505
Bradshaw, Amy D; Baicu, Catalin F; Rentz, Tyler J et al. (2010) Age-dependent alterations in fibrillar collagen content and myocardial diastolic function: role of SPARC in post-synthetic procollagen processing. Am J Physiol Heart Circ Physiol 298:H614-22
Mukherjee, Rupak; Zavadzkas, Juozas A; Rivers, William T et al. (2010) Short-term disruption in regional left ventricular electrical conduction patterns increases interstitial matrix metalloproteinase activity. Am J Physiol Heart Circ Physiol 299:H217-24
Chinnakkannu, Panneerselvam; Samanna, Venkatesababa; Cheng, Guangmao et al. (2010) Site-specific microtubule-associated protein 4 dephosphorylation causes microtubule network densification in pressure overload cardiac hypertrophy. J Biol Chem 285:21837-48
Mukherjee, Rupak; Rivers, William T; Ruddy, Jean Marie et al. (2010) Long-term localized high-frequency electric stimulation within the myocardial infarct: effects on matrix metalloproteinases and regional remodeling. Circulation 122:20-32

Showing the most recent 10 out of 136 publications