This core will provide all gross and microscopic pathology support for those projects utilizing animal models for atherosclerosis. Dr. Finegold's laboratory will study the vectors for gene transfer in the liver and muscle utilizing histochemical, immunohistochemical, and ultrastructural methods. Dr. Montgomery's Comparative Pathology Laboratory will be responsible for morphologic evaluation of all cardiovascular tissue from mice and rabbits utilized in the various projects. Veterinary pathologists trained in the anatomy and pathophysiology of cardiovascular disease will be utilized for tissue collection and evaluation. Atherosclerotic plaques in the major arteries of rabbits will be stained and measured utilizing image analysis and morphometric analysis. Similar methods will be utilized in mice on a specific 300 micron region of the aortic sinus and ascending aorta. Once baseline morphologic parameters have been established in each of the animal models, gene therapy will be implemented and tissues from these animals compared to controls. Quantitative and qualitative differences in lesion development will be addressed. This core will support three of the four research projects utilizing animals.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL050422-02
Application #
3759162
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
2
Fiscal Year
1994
Total Cost
Indirect Cost
Name
Baylor College of Medicine
Department
Type
DUNS #
074615394
City
Houston
State
TX
Country
United States
Zip Code
77030
Waugh, J M; Li-Hawkins, J; Yuksel, E et al. (2000) Thrombomodulin overexpression to limit neointima formation. Circulation 102:332-7
Waugh, J M; Yuksel, E; Li, J et al. (1999) Local overexpression of thrombomodulin for in vivo prevention of arterial thrombosis in a rabbit model. Circ Res 84:84-92
Waugh, J M; Kattash, M; Li, J et al. (1999) Gene therapy to promote thromboresistance: local overexpression of tissue plasminogen activator to prevent arterial thrombosis in an in vivo rabbit model. Proc Natl Acad Sci U S A 96:1065-70
Rojas-Martinez, A; Wyde, P R; Montgomery, C A et al. (1998) Distribution, persistency, toxicity, and lack of replication of an E1A-deficient adenoviral vector after intracardiac delivery in the cotton rat. Cancer Gene Ther 5:365-70
Faith, R E; Montgomery, C A; Durfee, W J et al. (1997) The cotton rat in biomedical research. Lab Anim Sci 47:337-45
Gottschalk, S; Sparrow, J T; Hauer, J et al. (1996) A novel DNA-peptide complex for efficient gene transfer and expression in mammalian cells. Gene Ther 3:448-57
Guo, Z S; Wang, L H; Eisensmith, R C et al. (1996) Evaluation of promoter strength for hepatic gene expression in vivo following adenovirus-mediated gene transfer. Gene Ther 3:802-10
Gingras, M C; Arevalo, P; Aguilar-Cordova, E (1996) Potential salmon sperm origin of the E3 region insert of the adenovirus 5 dl309 mutant. Cancer Gene Ther 3:151-4
Sparrow, J T; Monera, O D (1996) Improvements to the TMSBr method of peptide resin deprotection and cleavage: application to large peptides. Pept Res 9:218-22
Gottschalk, S; Tweten, R K; Smith, L C et al. (1995) Efficient gene delivery and expression in mammalian cells using DNA coupled with perfringolysin O. Gene Ther 2:498-503

Showing the most recent 10 out of 13 publications