Core B (Molecular analysis) core is intended to provide a centralized resource for quantitative PCR, DNA sequencing and sequence analysis, and a collection of characterized plasmids. These tasks were identified as important techniques and resources requiring expertise and expensive equipment not available to a single laboratory. One focus of the molecular core will be to promote quantitative PCR using the real-time fluorescent PCR """"""""TaqMan"""""""" assay developed by Applied Biosystems. It is important to measure the levels of vector and transgene expression in gene therapy experiments in absolute units in order to answer fundamental questions about the efficacy of gene therapy by various vectors. The core technician will perform the Taqman analyses and the core director will collaborate with the project scientists in developing strategies and quality controlling data. In addition, the molecular analysis core will promote the construction of well characterized gene therapy vectors by providing a verified collection of starting plasmids and by analysis of new plasmids using automated fluorescent DNA sequencing. The core director will provide informatic support in the use of computer software related to retrieval and analysis of DNA sequences, design of oligonucleotides for various applications and cloning strategies.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL051746-07
Application #
6318392
Study Section
Project Start
2000-06-01
Project End
2001-03-31
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
7
Fiscal Year
2000
Total Cost
$252,599
Indirect Cost
Name
Weill Medical College of Cornell University
Department
Type
DUNS #
201373169
City
New York
State
NY
Country
United States
Zip Code
10065
Ryan, Dorothy M; Vincent, Thomas L; Salit, Jacqueline et al. (2014) Smoking dysregulates the human airway basal cell transcriptome at COPD risk locus 19q13.2. PLoS One 9:e88051
Dvorak, Anna; Tilley, Ann E; Shaykhiev, Renat et al. (2011) Do airway epithelium air-liquid cultures represent the in vivo airway epithelium transcriptome? Am J Respir Cell Mol Biol 44:465-73
Krause, Anja; Whu, Wen Zhu; Xu, Yaqin et al. (2011) Protective anti-Pseudomonas aeruginosa humoral and cellular mucosal immunity by AdC7-mediated expression of the P. aeruginosa protein OprF. Vaccine 29:2131-9
Limberis, Maria P; Bell, Christie L; Heath, Jack et al. (2010) Activation of transgene-specific T cells following lentivirus-mediated gene delivery to mouse lung. Mol Ther 18:143-50
Song, Yuhu; Lou, Howard H; Boyer, Julie L et al. (2009) Functional cystic fibrosis transmembrane conductance regulator expression in cystic fibrosis airway epithelial cells by AAV6.2-mediated segmental trans-splicing. Hum Gene Ther 20:267-81
Vandenberghe, L H; Breous, E; Nam, H-J et al. (2009) Naturally occurring singleton residues in AAV capsid impact vector performance and illustrate structural constraints. Gene Ther 16:1416-28
Fein, David E; Limberis, Maria P; Maloney, Sean F et al. (2009) Cationic lipid formulations alter the in vivo tropism of AAV2/9 vector in lung. Mol Ther 17:2078-87
Limberis, Maria P; Vandenberghe, Luk H; Zhang, Liqun et al. (2009) Transduction efficiencies of novel AAV vectors in mouse airway epithelium in vivo and human ciliated airway epithelium in vitro. Mol Ther 17:294-301
Tertilt, Christine; Joh, Ju; Krause, Anja et al. (2009) Expression of B-cell activating factor enhances protective immunity of a vaccine against Pseudomonas aeruginosa. Infect Immun 77:3044-55
Limberis, M P; Bell, C L; Wilson, J M (2009) Identification of the murine firefly luciferase-specific CD8 T-cell epitopes. Gene Ther 16:441-7

Showing the most recent 10 out of 85 publications