The biostatistics core's primary objective is to collaborate with investigators in each individual study throughout all phases of their research. We will provide support or be responsible for methodological, statistical and computer related issues including study design, sample size calculation and power analysis, randomization schedules, data collection instruments, data storage and retrieval, data analysis and manuscript preparation. The biostatistics core will be responsible for ensuring that each study design is adequate, including a clear definition of primary and secondary outcomes for each study, according to the hypothesis stated by the principal investigator's sample. There is assistance with sample size determination with specified Type I and Type II errors, provision of alternative methods to test hypothesis when the initial approach is not feasible relative to the pool of animals available and development of randomization schedules or sampling schemes for each study. The Core helps implement quality control measures common to all studies and provides methodological support to each project in developing new analytical techniques as needed and assisting in data analysis and interpretation of results as needed.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL051952-13
Application #
7218018
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
2006-04-01
Project End
2009-03-31
Budget Start
2006-04-01
Budget End
2007-03-31
Support Year
13
Fiscal Year
2006
Total Cost
$166,914
Indirect Cost
Name
Wake Forest University Health Sciences
Department
Type
DUNS #
937727907
City
Winston-Salem
State
NC
Country
United States
Zip Code
27157
Ahmad, Sarfaraz; Ferrario, Carlos M (2018) Chymase inhibitors for the treatment of cardiac diseases: a patent review (2010-2018). Expert Opin Ther Pat 28:755-764
Wang, Hao; Sun, Xuming; Lin, Marina S et al. (2018) G protein-coupled estrogen receptor (GPER) deficiency induces cardiac remodeling through oxidative stress. Transl Res 199:39-51
Ahmad, Sarfaraz; Sun, Xuming; Lin, Marina et al. (2018) Blunting of estrogen modulation of cardiac cellular chymase/RAS activity and function in SHR. J Cell Physiol 233:3330-3342
Li, Tiankai; Zhang, Xiaowei; Cheng, Heng-Jie et al. (2018) Critical role of the chymase/angiotensin-(1-12) axis in modulating cardiomyocyte contractility. Int J Cardiol 264:137-144
Dell'Italia, Louis J; Collawn, James F; Ferrario, Carlos M (2018) Multifunctional Role of Chymase in Acute and Chronic Tissue Injury and Remodeling. Circ Res 122:319-336
Ola, Mohammad Shamsul; Alhomida, Abdullah S; Ferrario, Carlos M et al. (2017) Role of Tissue Renin-angiotensin System and the Chymase/angiotensin-( 1-12) Axis in the Pathogenesis of Diabetic Retinopathy. Curr Med Chem 24:3104-3114
Ferrario, Carlos M; Mullick, Adam E (2017) Renin angiotensin aldosterone inhibition in the treatment of cardiovascular disease. Pharmacol Res 125:57-71
Chappell, Mark C; Al Zayadneh, Ebaa M (2017) Angiotensin-(1-7) and the Regulation of Anti-Fibrotic Signaling Pathways. J Cell Signal 2:
Alencar, Allan K; da Silva, Jaqueline S; Lin, Marina et al. (2017) Effect of Age, Estrogen Status, and Late-Life GPER Activation on Cardiac Structure and Function in the Fischer344×Brown Norway Female Rat. J Gerontol A Biol Sci Med Sci 72:152-162
Guichard, Jason L; Rogowski, Michael; Agnetti, Giulio et al. (2017) Desmin loss and mitochondrial damage precede left ventricular systolic failure in volume overload heart failure. Am J Physiol Heart Circ Physiol 313:H32-H45

Showing the most recent 10 out of 309 publications