The neurohumoral systems and kidneys are intimately linked in the control of cardiovascular dynamics. Previous experimental and theoretical studies suggest that abnormalities of kidney function, manifest by impaired pressure natriuresis, underlie all forms of hypertension studied thus far. In some cases, these disturbances originate intrarenally, but they also occur via activation of neurohumoral mechanisms that impair renal excretory capability. Therefore, a large share of our research has been directed toward understanding the intrarenal and neurohumoral mechanisms that regulate kidney function, and how they are altered in pathophysiologic conditions such as hypertension. During the previous project period, we studied extensively obesity hypertension, which has special relevance to human essential hypertension. Our studies indicated that activation of the sympathetic nervous system (SNS), via the renal nerves, and intrarenal structural changes play a major role in the pathophysiology of obesity hypertension. The proposed studies will determine quantitative importance and mechanisms by which humoral systems activate the SNS and the role of neurohumoral and hemodynamic mechanisms in mediating biochemical, structural, and functional changes that occur in the kidneys in the early phases of obesity. We will utilize a model of dietary-induced obesity, produced by feeding a high fat diet in chronically instrumented dogs, that closely mimics the neurohumoral, renal, and cardiovascular changes observed in obese humans. The major goals of this proposal are: 1) to test the hypothesis that systemic or CNS actions of leptin, angiotensin II (AngII), insulin, and non-esterified fatty acids (NEFA), acting individually or synergistically, increase renal sympathetic activity, impair renal excretory, function, and raise arterial pressure in obesity; 2) to test the hypothesis that increased arterial pressure, increased sympathetic activity, AngII, and insulin interact to stimulate renal medullary matrix formation, glomerular injury, and other structural and biochemical changes in the kidneys in the early phases of obesity hypertension. The proposed work will utilize an integrative approach, employing chronically instrumented dogs as well as biochemical, molecular biological, histological, and morphometric methods, to elucidate the role of neurohumoral mechanisms in the pathophysiology of obesity hypertension.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL051971-09
Application #
6564924
Study Section
Project Start
2001-12-01
Project End
2002-11-30
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
9
Fiscal Year
2002
Total Cost
$233,146
Indirect Cost
Name
University of Mississippi Medical Center
Department
Type
DUNS #
928824473
City
Jackson
State
MS
Country
United States
Zip Code
39216
Shekhar, Shashank; Cunningham, Mark W; Pabbidi, Mallikarjuna R et al. (2018) Targeting vascular inflammation in ischemic stroke: Recent developments on novel immunomodulatory approaches. Eur J Pharmacol 833:531-544
Quan, Nanhu; Wang, Lin; Chen, Xu et al. (2018) Sestrin2 prevents age-related intolerance to post myocardial infarction via AMPK/PGC-1? pathway. J Mol Cell Cardiol 115:170-178
Lindsey, Merry L; Mouton, Alan J; Ma, Yonggang (2018) Adding Reg3? to the acute coronary syndrome prognostic marker list. Int J Cardiol 258:24-25
Brooks, Heddwen L; Lindsey, Merry L (2018) Guidelines for authors and reviewers on antibody use in physiology studies. Am J Physiol Heart Circ Physiol 314:H724-H732
Aberdein, Nicola; Dambrino, Robert J; do Carmo, Jussara M et al. (2018) Role of PTP1B in POMC neurons during chronic high-fat diet: sex differences in regulation of liver lipids and glucose tolerance. Am J Physiol Regul Integr Comp Physiol 314:R478-R488
Eddy, Adrian C; Bidwell 3rd, Gene L; George, Eric M (2018) Pro-angiogenic therapeutics for preeclampsia. Biol Sex Differ 9:36
do Carmo, Jussara M; da Silva, Alexandre A; Moak, Sydney P et al. (2018) Role of melanocortin 4 receptor in hypertension induced by chronic intermittent hypoxia. Acta Physiol (Oxf) :e13222
Lindsey, Merry L; Bolli, Roberto; Canty Jr, John M et al. (2018) Guidelines for experimental models of myocardial ischemia and infarction. Am J Physiol Heart Circ Physiol 314:H812-H838
Chen, Xu; Li, Xuan; Zhang, Wenyan et al. (2018) Activation of AMPK inhibits inflammatory response during hypoxia and reoxygenation through modulating JNK-mediated NF-?B pathway. Metabolism 83:256-270
Ma, Yonggang; Mouton, Alan J; Lindsey, Merry L (2018) Cardiac macrophage biology in the steady-state heart, the aging heart, and following myocardial infarction. Transl Res 191:15-28

Showing the most recent 10 out of 767 publications