This program, which began more than 34 years ago, brings together investigators from multiple disciplines with an interest in the integrative aspects of circulatory function. Our major long-term goal has been to develop a quantitative analysis of circulatory dynamics and related control systems, including the kidneys, sympathetic nervous system, and endocrine systems. Two unique features of this program are: 1) it utilizes an integrative approach to understand complex interactions between multiple components of cardiovascular control systems, and 2) it focuses mainly on long-term control of the circulation because many cardiovascular diseases, such as hypertension, are manifestations of abnormal control mechanisms that develop slowly over long periods of time. The research proposed in this application is described by the titles of the specific projects as follows: I. Neurohumoral and Renal Mechanisms of Hypertension; this project will elucidate the neurohumoral and intrarenal mechanisms that contribute to the pathogenesis of obesity hypertension, which is of special relevance to human essential hypertension. II. Renal Control of Body Fluid Volumes and Circulatory Dynamics; this project will define the interaction between endothelin, oxidative stress and tumor necrosis factor in mediating altered renal-pressure natriuresis and hypertension in response to chronic reductions in uterine perfusion pressure in pregnant rats. III. Mechanisms of Salt-Sensitive Hypertension; this project will test the hypothesis that an increase in reactive oxygen species and a decrease in antioxidant mechanisms in the kidney play a major role in the development of salt-sensitive hypertension and associated renal injury. IV. Neural Mechanisms in Cardiorenal Regulation; this project will test the hypothesis that sustained activation of the baroreflex attenuates hypertension by suppressing renal sympathetic activity and promoting sodium excretion, and that these effects are mediated, in part, via suppression of the renin-angiotensin system. V. Role of Humoral Factors in Postmenopausal Hypertension; this project will test the hypothesis that post-menopausal hypertension in rats is caused by impaired renal-pressure-natriuresis mediated by activation of the renin-angiotensin system, and subsequent increases in endothelin and oxidative stress that are due, in part, to increases in serum testosterone. The total program, including core support services, provides a unique interdisciplinary approach toward developing an integrative analysis of long-term regulation of blood pressure and circulatory dynamics in several forms of experimental hypertension that have great relevance to human hypertension.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL051971-14
Application #
7163821
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Program Officer
Barouch, Winifred
Project Start
1997-08-01
Project End
2008-11-30
Budget Start
2006-12-01
Budget End
2007-11-30
Support Year
14
Fiscal Year
2007
Total Cost
$2,243,115
Indirect Cost
Name
University of Mississippi Medical Center
Department
Physiology
Type
Schools of Medicine
DUNS #
928824473
City
Jackson
State
MS
Country
United States
Zip Code
39216
Bakrania, Bhavisha A; Spradley, Frank T; Satchell, Simon C et al. (2018) Heme oxygenase-1 is a potent inhibitor of placental ischemia-mediated endothelin-1 production in cultured human glomerular endothelial cells. Am J Physiol Regul Integr Comp Physiol 314:R427-R432
Chade, Alejandro R; Williams, Maxx L; Guise, Erika et al. (2018) Systemic biopolymer-delivered vascular endothelial growth factor promotes therapeutic angiogenesis in experimental renovascular disease. Kidney Int 93:842-854
Clemmer, John S; Hester, Robert L; Pruett, W Andrew (2018) Simulating a virtual population's sensitivity to salt and uninephrectomy. Interface Focus 8:20160134
Granger, Joey P; Spradley, Frank T; Bakrania, Bhavisha A (2018) The Endothelin System: A Critical Player in the Pathophysiology of Preeclampsia. Curr Hypertens Rep 20:32
da Silva, Alexandre A; Freeman, J Nathan; Hall, John E et al. (2018) Control of appetite, blood glucose, and blood pressure during melanocortin-4 receptor activation in normoglycemic and diabetic NPY-deficient mice. Am J Physiol Regul Integr Comp Physiol 314:R533-R539
Reckelhoff, Jane F; Alexander, Barbara T (2018) Reproducibility in animal models of hypertension: a difficult problem. Biol Sex Differ 9:53
Edwards, Kristin S; Ashraf, Sadia; Lomax, Tyler M et al. (2018) Uncoupling protein 3 deficiency impairs myocardial fatty acid oxidation and contractile recovery following ischemia/reperfusion. Basic Res Cardiol 113:47
Lindsey, Merry L (2018) Reg-ulating macrophage infiltration to alter wound healing following myocardial infarction. Cardiovasc Res 114:1571-1572
DeLeon-Pennell, Kristine Y; Mouton, Alan J; Ero, Osasere K et al. (2018) LXR/RXR signaling and neutrophil phenotype following myocardial infarction classify sex differences in remodeling. Basic Res Cardiol 113:40
Lindsey, Merry L; Kassiri, Zamaneh; Virag, Jitka A I et al. (2018) Guidelines for measuring cardiac physiology in mice. Am J Physiol Heart Circ Physiol 314:H733-H752

Showing the most recent 10 out of 767 publications