The aims of the Protein Engineering and Analytic Core are for the separate projects: 1. To isolate and characterize the regulatory and contractile proteins used. 2. To make and characterize the mutant regulatory proteins. 3. To fluorescently label the specific proteins used. 4. To measure Ca binding to isolated proteins and reconstituted thin filaments. 5. To analyze and prepare skinned fiber solutions used in these studies.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL052558-04
Application #
6242392
Study Section
Project Start
1997-09-01
Project End
1998-08-31
Budget Start
1996-10-01
Budget End
1997-09-30
Support Year
4
Fiscal Year
1997
Total Cost
Indirect Cost
Name
University of Washington
Department
Type
DUNS #
135646524
City
Seattle
State
WA
Country
United States
Zip Code
98195
Moreno-Gonzalez, Alicia; Gillis, Todd E; Rivera, Anthony J et al. (2007) Thin-filament regulation of force redevelopment kinetics in rabbit skeletal muscle fibres. J Physiol 579:313-26
Kohler, Jan; Chen, Ying; Brenner, Bernhard et al. (2003) Familial hypertrophic cardiomyopathy mutations in troponin I (K183D, G203S, K206Q) enhance filament sliding. Physiol Genomics 14:117-28
Liang, Bo; Chen, Ying; Wang, Chien-Kao et al. (2003) Ca2+ regulation of rabbit skeletal muscle thin filament sliding: role of cross-bridge number. Biophys J 85:1775-86
Regnier, Michael; Rivera, Anthony J; Wang, Chien-Kao et al. (2002) Thin filament near-neighbour regulatory unit interactions affect rabbit skeletal muscle steady-state force-Ca(2+) relations. J Physiol 540:485-97
Martyn, D A; Chase, P B; Regnier, M et al. (2002) A simple model with myofilament compliance predicts activation-dependent crossbridge kinetics in skinned skeletal fibers. Biophys J 83:3425-34
LaMadrid, M A; Chase, P B; Gordon, A M (2002) Motility assays of calcium regulation of actin filaments. Results Probl Cell Differ 36:133-48
Martyn, D A; Regnier, M; Xu, D et al. (2001) Ca2+ - and cross-bridge-dependent changes in N- and C-terminal structure of troponin C in rat cardiac muscle. Biophys J 80:360-70
Mariano, A C; Alexandre, G M; Silva, L C et al. (2001) Dimethyl sulphoxide enhances the effects of P(i) in myofibrils and inhibits the activity of rabbit skeletal muscle contractile proteins. Biochem J 358:627-36
Chase, P B; Chen, Y; Kulin, K L et al. (2000) Viscosity and solute dependence of F-actin translocation by rabbit skeletal heavy meromyosin. Am J Physiol Cell Physiol 278:C1088-98
Regnier, M; Rivera, A J; Chen, Y et al. (2000) 2-deoxy-ATP enhances contractility of rat cardiac muscle. Circ Res 86:1211-7

Showing the most recent 10 out of 25 publications