The Vector Development and Production Core occupies a pivotal role for this clinical gene therapy proposal. The challenges associated with production of adequate quantities of lentiviral vectors has been a major hurdle to their clinical application, even though the field has been aware for years that these vectors provide significant clinical advantages. Our Vector Core contributes two major elements to researchers wishing to use lentiviral vectors in the clinic: a state-of-the-art GMP production facility, fully staffed and actively producing lentiviral vectors, and a novel vector production system using stable cell lines developed in the Core and capable of producing over 100 liters of high titer >10^7 tu/ml), self-inactivating, clinical lentiviral vector supernatants in a single production run. We plan to produce at least three clinical batches of lentiviral vectors before 2011, with additional vectors being produced as they are developed and clinical testing becomes indicated. The first will be the CL20i4-EF1? -hYcOPT vector for the SCID-X1 clinical trial described in the project 3, """"""""Gene Therapy for X-Linked Severe Combined Immunodeficiency"""""""". Bioreactor production of this vector from a Master Cell Banked producer clone is already in progress, and a clinically certified product is expected to be ready for use by mid-2009. Other vectors expressing y-globin (described in project 1, """"""""Gene Therapy of Sickle Cell Disease through Enhancement of Fetal Hemoglobin"""""""") or WASp (described in project 2, """"""""Development of Gene Therapy for Wiskott-Aldrich Syndrome"""""""", are predicted to complete clinical production by the end of 2009 and 2010, respectively. In addition to the clinical vector production services, the Vector Core Laboratory will continue developing our stable producer cell system to facilitate the rapid and efficient derivation of cloned producer cell lines with newly designed vectors. Finally, as all three proposed research projects in this Program Project submission will involve clinical gene therapy with lentiviral vectors, the Vector Core will coordinate the critical analysis of patient samples for vector integration site distribution. We will first modify established PCR techniques currently in use in our research labs to facilitate sample analysis using the new massively parallel sequencing instrumentation available at St. Jude, and expand on our bioinformatic capability to manage the large data sets this technology generates Subsequently, the Vector Core will utilize our modified techniques to perform the FDA-recommended clonality assays on all treated patient tissue samples at regular intervals, and warehouse the integration site data sets to facilitate comparative analysis between different timepoints, patients, vectors, and clinical trials.

Public Health Relevance

This Core is relevant to the Program by providing for all vector development and production work including derivation of stable producer cell lines and production of vector preparation for use in clinical trials.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL053749-20
Application #
8716802
Study Section
Heart, Lung, and Blood Program Project Review Committee (HLBP)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
20
Fiscal Year
2014
Total Cost
Indirect Cost
Name
St. Jude Children's Research Hospital
Department
Type
DUNS #
City
Memphis
State
TN
Country
United States
Zip Code
38105
Zhao, Hui Fen; Abraham, Allistair; Kim, Yoon-Sang et al. (2017) Lentiviral Transfer of ?-Globin with Fusion Gene NUP98-HOXA10HD Expands Hematopoietic Stem Cells and Ameliorates Murine ?-Thalassemia. Mol Ther 25:593-605
De Ravin, Suk See; Wu, Xiaolin; Moir, Susan et al. (2016) Lentiviral hematopoietic stem cell gene therapy for X-linked severe combined immunodeficiency. Sci Transl Med 8:335ra57
Abraham, Allistair; Kim, Yoon-Sang; Zhao, Huifen et al. (2016) Increased Engraftment of Human Short Term Repopulating Hematopoietic Cells in NOD/SCID/IL2r?null Mice by Lentiviral Expression of NUP98-HOXA10HD. PLoS One 11:e0147059
Wielgosz, Matthew M; Kim, Yoon-Sang; Carney, Gael G et al. (2015) Generation of a lentiviral vector producer cell clone for human Wiskott-Aldrich syndrome gene therapy. Mol Ther Methods Clin Dev 2:14063
Pestina, Tamara I; Hargrove, Phillip W; Zhao, Huifen et al. (2015) Amelioration of murine sickle cell disease by nonablative conditioning and ?-globin gene-corrected bone marrow cells. Mol Ther Methods Clin Dev 2:15045
Zhou, Sheng; Bonner, Melissa A; Wang, Yong-Dong et al. (2015) Quantitative shearing linear amplification polymerase chain reaction: an improved method for quantifying lentiviral vector insertion sites in transplanted hematopoietic cell systems. Hum Gene Ther Methods 26:4-12
Urbinati, Fabrizia; Hargrove, Phillip W; Geiger, Sabine et al. (2015) Potentially therapeutic levels of anti-sickling globin gene expression following lentivirus-mediated gene transfer in sickle cell disease bone marrow CD34+ cells. Exp Hematol 43:346-351
Yu, Hui; Neale, Geoffrey; Zhang, Hui et al. (2014) Downregulation of Prdm16 mRNA is a specific antileukemic mechanism during HOXB4-mediated HSC expansion in vivo. Blood 124:1737-47
Treanor, Louise M; Zhou, Sheng; Janke, Laura et al. (2014) Interleukin-7 receptor mutants initiate early T cell precursor leukemia in murine thymocyte progenitors with multipotent potential. J Exp Med 211:701-13
Griffith, Linda M; Cowan, Morton J; Notarangelo, Luigi D et al. (2014) Primary Immune Deficiency Treatment Consortium (PIDTC) report. J Allergy Clin Immunol 133:335-47

Showing the most recent 10 out of 152 publications