Platelets promote the catalysis of two sequential calcium-dependent reactions in blood coagulation: the activation of factor X (FX) by a complex of FIXa and FVIIIa and the conversion of prothrombin to thrombin by a complex of FXa and FVa. The contribution of platelets to F-X activation is receptor-mediated since platelets posses specific, high-affinity, saturable finding sites for FIXa and FVIII and receptor occupancy is closely correlated with rates of F-X activation on the platelet surface. Our recent studies have demonstrated that activated human platelets expose 500-600 FIXa binding sites per platelet with a Kd(app) of approximately 2.5 nM in the absence of FVIII and FX and the same number of sites with enhanced affinity (Kd(app) approximately 0.5 nM) in the presence of FVIII and FX. We have also confirmed the observation of Nesheim and his colleagues who have demonstrated the presence of a single class of binding sites (450/platelet, Kd = 2.9 nM) for recombinant human FVIII (rFVIII) on thrombin-activated human platelets. Moreover, we have demonstrated the presence of a low-affinity, high-capacity binding site on activated human platelets for FX which is shared with prothrombin and a lower capacity, higher affinity site that is specific for FX in the presence of FIXa and FVIII. These observations support the hypothesis that the F-X activating complex on the platelet surface consists of a three-receptor complex, the assembly of which results in a 24 million-fold acceleration of the rate of F-X activation. The purpose of the studies proposed in this application is to examine in more detail the validity of this hypothesis and to determine the structural components on the platelet surface and on the enzyme (FIXa) required for the assembly of this important coagulation complex. Specifically, we propose to accomplish a complete characterization of the F-X activating complex on the platelet surface by carrying out coordinate binding studies with FIXa, FVIII(a), and FX and simultaneous kinetic studies of F-X activation. We propose to determine the structural domains in FIXa required for binding to its platelet receptor and for assembly of the F-X activating complex, specifically focusing upon the role of the Gla domain and the EGF domains. We will determine the state of platelet activation required for binding the components of the F-X activating complex and carry out studies aimed to determined the subcellular localization and biochemical characterization of the platelet receptors essential for binding the components of the F-X activating complex.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
1P01HL056914-01A1
Application #
6242733
Study Section
Project Start
1997-07-07
Project End
1998-06-30
Budget Start
1996-10-01
Budget End
1997-09-30
Support Year
1
Fiscal Year
1997
Total Cost
Indirect Cost
Name
Temple University
Department
Type
DUNS #
City
Philadelphia
State
PA
Country
United States
Zip Code
19122
Guo, Yan-Lin; Wang, Shujie; Cao, Dian J et al. (2003) Apoptotic effect of cleaved high molecular weight kininogen is regulated by extracellular matrix proteins. J Cell Biochem 89:622-32
Wang, Shujie; Hasham, Muneer G; Isordia-Salas, Irma et al. (2003) Upregulation of Cdc2 and cyclin A during apoptosis of endothelial cells induced by cleaved high-molecular-weight kininogen. Am J Physiol Heart Circ Physiol 284:H1917-23
Ahmad, S S; London, F S; Walsh, P N (2003) The assembly of the factor X-activating complex on activated human platelets. J Thromb Haemost 1:48-59
Zhang, H; Colman, R W; Sheng, N (2003) Regulation of CD11b/CD18 (Mac-1) adhesion to fibrinogen by urokinase receptor (uPAR). Inflamm Res 52:86-93
Colman, R W; Pixley, R A; Sainz, I M et al. (2003) Inhibition of angiogenesis by antibody blocking the action of proangiogenic high-molecular-weight kininogen. J Thromb Haemost 1:164-70
Baglia, Frank A; Shrimpton, Corie N; Lopez, Jose A et al. (2003) The glycoprotein Ib-IX-V complex mediates localization of factor XI to lipid rafts on the platelet membrane. J Biol Chem 278:21744-50
Chavakis, Triantafyllos; Santoso, Sentot; Clemetson, Kenneth J et al. (2003) High molecular weight kininogen regulates platelet-leukocyte interactions by bridging Mac-1 and glycoprotein Ib. J Biol Chem 278:45375-81
Baird, T Regan; Walsh, Peter N (2003) Factor XI, but not prekallikrein, blocks high molecular weight kininogen binding to human umbilical vein endothelial cells. J Biol Chem 278:20618-23
Pixley, R A; Lin, Y; Isordia-Salas, I et al. (2003) Fine mapping of the sequences in domain 5 of high molecular weight kininogen (HK) interacting with heparin and zinc. J Thromb Haemost 1:1791-8
Mastellos, Dimitrios; Morikis, Dimitrios; Isaacs, Stuart N et al. (2003) Complement: structure, functions, evolution, and viral molecular mimicry. Immunol Res 27:367-86

Showing the most recent 10 out of 49 publications