The Small Animal Core: Models of Acute Lung Injury (ALI) will provide two major core functions to support the PPG's research investigators and five research projects. The first function is providing murine models of ALI (LPS- and vertilator-induced) with the core ensuring reproducible studies with a complete range of expertise and tools to obtain critical information pertaining to the cellular and molecular basis of endothelial barrier permeability. The Core, using well published techniques and parameters of acute lung injury, will employ state-of-the-art evaluation of pulmonary pathophysiology, interventions, data analysis, and interpretation, in order to provide insight into the efficacy and mechanisms of clinically relevant management approaches and to facilitate the translation of basic research to the clinical arena. The Core will take advantage of the resources available at the University of Chicago Small Animal Imaging core (which includes MRI, CT Optical Imaging, etc. This Core provides quantitative measurements of permeability, inflammation, edema, vascular leak and biomarkers. A second core function is to care for the wild type and geneticallyengineered mice utilized in this Program and to generate novel transgenic mice where indicated. Core leaders have assembled talented and well published personnel and enjoy newly built laboratory facilities to satisfy a wide range of experimental physiological and imaging needs. Core C personnel have professional experience spanning the fields of physiology, microsurgery, biology, and animal care and has already provided convincing evidence of coherent interactions with investigators of all five research projects delivering key preliminary results related to our PPG projects.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL058064-17
Application #
8374693
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
2014-01-31
Budget Start
2012-02-01
Budget End
2013-01-31
Support Year
17
Fiscal Year
2012
Total Cost
$300,642
Indirect Cost
$109,150
Name
University of Illinois at Chicago
Department
Type
DUNS #
098987217
City
Chicago
State
IL
Country
United States
Zip Code
60612
Oita, Radu C; Camp, Sara M; Ma, Wenli et al. (2018) Novel Mechanism for Nicotinamide Phosphoribosyltransferase Inhibition of TNF-?-mediated Apoptosis in Human Lung Endothelial Cells. Am J Respir Cell Mol Biol 59:36-44
Wang, Ting; Brown, Mary E; Kelly, Gabriel T et al. (2018) Myosin light chain kinase ( MYLK) coding polymorphisms modulate human lung endothelial cell barrier responses via altered tyrosine phosphorylation, spatial localization, and lamellipodial protrusions. Pulm Circ 8:2045894018764171
Wang, X; Wang, L; Garcia, J G N et al. (2018) The Significant Role of c-Abl Kinase in Barrier Altering Agonists-mediated Cytoskeletal Biomechanics. Sci Rep 8:1002
Szilágyi, Keely L; Liu, Cong; Zhang, Xu et al. (2017) Epigenetic contribution of the myosin light chain kinase gene to the risk for acute respiratory distress syndrome. Transl Res 180:12-21
Wang, X; Bleher, R; Wang, L et al. (2017) Imatinib Alters Agonists-mediated Cytoskeletal Biomechanics in Lung Endothelium. Sci Rep 7:14152
Shekhawat, Gajendra S; Dudek, Steven M; Dravid, Vinayak P (2017) Development of ultrasound bioprobe for biological imaging. Sci Adv 3:e1701176
Mascarenhas, Joseph B; Tchourbanov, Alex Y; Fan, Hanli et al. (2017) Mechanical Stress and Single Nucleotide Variants Regulate Alternative Splicing of the MYLK Gene. Am J Respir Cell Mol Biol 56:29-37
Belvitch, Patrick; Brown, Mary E; Brinley, Brittany N et al. (2017) The ARP 2/3 complex mediates endothelial barrier function and recovery. Pulm Circ 7:200-210
Camp, Sara M; Chiang, Eddie T; Sun, Chaode et al. (2016) ""Pulmonary Endothelial Cell Barrier Enhancement by Novel FTY720 Analogs: Methoxy-FTY720, Fluoro-FTY720, and ?-Glucuronide-FTY720"". Chem Phys Lipids 194:85-93
Rojo de la Vega, Montserrat; Dodson, Matthew; Gross, Christine et al. (2016) Role of Nrf2 and Autophagy in Acute Lung Injury. Curr Pharmacol Rep 2:91-101

Showing the most recent 10 out of 270 publications