The focus of the Program Project is to investigate the molecular and signaling mechanisms of re-sealing of adherens junctions (AJs) and restoration of lung endothelial barrier and homeostasis post-inflammatory lung injury. These processes will be defined by means of dynamic changes in the distribution of proteins comprising AJs including signaling molecules, assessment of their dynamics and activity at the level of lamellipodia protrusions and AJs. Core B will provide technical support for all Projects in addressing the role of key signaling molecules involved in lung endothelial barrier restoration as proposed including the vascular endothelial protein tyrosine phosphatase (VE-PTP) in Project 1, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFK- FB3) in Project 2, sphingosine-1-phosphate receptor-1 (S1PR1) in Project 3, and phospholipase D2 (PLD2) in Project 4. This will involve advanced live-cell imaging and state-of-art image analysis to investigate (i) distribution and dynamics of adhesion (such as VE-cadherin) and signaling proteins at AJs and in lamellipodia; (ii) key role of PFK-FB3 and PLD2 in lamellipodia formation and dynamics and the re-sealing of AJs; (iii) spatiotemporal activity of small RhoA GTPases Rac1, Cdc42 and RhoA; (iv) utilization of photoactivated probes to control the activity of signaling molecules at specific loci such as AJs; (v) mechanical acto-myosin tension across VE-cadherin adhesion using biosensors. These methods available in Core B will provide the advanced imaging capabilities needed to address the questions posed. In addition, Core B will provide high-quality uniformly cultured human and mouse lung microvessel endothelial cells and isolation of lung endothelial cells from genetic mouse models as needed. The Imaging and Cell Culture Core B will be essential for meeting the scientific objectives of each Project and the Program as a whole.

Public Health Relevance

The objectives of Core B are to provide the Principal Investigators in the Program with technical support in microscopic analyses of protein dynamics and activities within specific intracellular domains such as membranous protrusion and cell-cell adhesion in order to understand how endothelial barrier property is restored after inflammatory injury. This is important because understanding the intrinsic key elements of the recovery process will lay a background for development of novel therapeutic targets for treatment of lung inflammation and injury. Core B will offer state-of-the-art live-cell imaging techniques and high-quality uniformly cultured human and mouse lung microvessel endothelial cells that are essential for meeting the scientific objectives of the Program.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL060678-20
Application #
9970538
Study Section
Special Emphasis Panel (ZHL1)
Program Officer
Xiao, Lei
Project Start
2000-03-08
Project End
2021-06-30
Budget Start
2020-07-01
Budget End
2021-06-30
Support Year
20
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Illinois at Chicago
Department
Type
DUNS #
098987217
City
Chicago
State
IL
Country
United States
Zip Code
60612
Marsboom, Glenn; Rehman, Jalees (2018) Hypoxia Signaling in Vascular Homeostasis. Physiology (Bethesda) 33:328-337
Lv, Yang; Kim, Kyungho; Sheng, Yue et al. (2018) YAP Controls Endothelial Activation and Vascular Inflammation Through TRAF6. Circ Res 123:43-56
Christoforidis, Theodore; Driver, Tom G; Rehman, Jalees et al. (2018) Generation of controllable gaseous H2S concentrations using microfluidics. RSC Adv 8:4078-4083
Di, Anke; Xiong, Shiqin; Ye, Zhiming et al. (2018) The TWIK2 Potassium Efflux Channel in Macrophages Mediates NLRP3 Inflammasome-Induced Inflammation. Immunity 49:56-65.e4
Chen, Zhenlong; D S Oliveira, Suellen; Zimnicka, Adriana M et al. (2018) Reciprocal regulation of eNOS and caveolin-1 functions in endothelial cells. Mol Biol Cell 29:1190-1202
Le Master, Elizabeth; Huang, Ru-Ting; Zhang, Chongxu et al. (2018) Proatherogenic Flow Increases Endothelial Stiffness via Enhanced CD36-Mediated Uptake of Oxidized Low-Density Lipoproteins. Arterioscler Thromb Vasc Biol 38:64-75
Mittal, Manish; Nepal, Saroj; Tsukasaki, Yoshikazu et al. (2017) Neutrophil Activation of Endothelial Cell-Expressed TRPM2 Mediates Transendothelial Neutrophil Migration and Vascular Injury. Circ Res 121:1081-1091
Yamada, Kaori H; Kang, Hojin; Malik, Asrar B (2017) Antiangiogenic Therapeutic Potential of Peptides Derived from the Molecular Motor KIF13B that Transports VEGFR2 to Plasmalemma in Endothelial Cells. Am J Pathol 187:214-224
Rexius-Hall, Megan L; Rehman, Jalees; Eddington, David T (2017) A microfluidic oxygen gradient demonstrates differential activation of the hypoxia-regulated transcription factors HIF-1? and HIF-2?. Integr Biol (Camb) 9:742-750
Robinson, Tanisha M; Jicsinszky, Laszlo; Karginov, Andrei V et al. (2017) Inhibition of Clostridium perfringens epsilon toxin by ?-cyclodextrin derivatives. Int J Pharm 531:714-717

Showing the most recent 10 out of 200 publications