Persistent pulmonary hypertension of the newborn (PPHN) is characterized by failure of the pulmonary circulation to achieve or sustain the normal decrease in pulmonary vascular resistance (PVR) at birth. Mechanisms that contribute to the pathogenesis and pathophysiology of PPHN are uncertain, but include abnormalities of vascular function (""""""""maladaptation""""""""), structure (""""""""maldevelopment""""""""), and growth (""""""""underdevelopment""""""""). Vascular endothelial growth factor (VEGF) is a potent endothelial cell mitogen and a critical trophic factor for the maintenance of normal endothelial function. Past studies in mouse models of lung development have clearly shown that VEGF plays an essential role in vasculogenesis and angiogenesis during the early embryonic period, but little is known about the role of VEGF and its KDR receptor in vascular growth and endothelial function in the pulmonary circulation during late gestation. The endothelial cell plays a central role in the regulation of the normal fetal and transitional pulmonary circulations, especially through production of nitric oxide (NO). NO modulates basal PVR in the normal fetus, contributes to the fall in PVR at birth, and is decreased in experimental models of PPHN. However, mechanisms that regulate endothelial function and NOS expression in the perinatal lung are poorly understood. In vitro studies suggest that VEGF mediates endothelial cell growth through NO-dependent mechanisms, and that VEGF can upregulate NO synthase (NOS) expression in some settings. Whether the VEGF-KDR system plays a critical role in angiogenesis, endothelial cell survival and function, and the regulation of NOS expression during late fetal life is unknown. Therefore, we hypothesize that the VEGF-KDR axis is critical for normal lung vascular growth, and that disruption of VEGF production or activity impairs pulmonary vascular development, leading to decreased endothelial cell growth and function, and failure of postnatal adaptation at birth. To test these hypotheses, we propose to investigate the following specific aims: 1) to define normal temporal and cell-specific changes in VEGF-KDR expression during lung maturation in the fetal and postnatal lung; 2) to determine whether abnormal hemodynamic stress disrupts normal vascular growth in utero, decreases VEGF and KDR expression and activities, and contributes to failure of postnatal adaptation at birth; 3) to determine whether inhibition of VEGF or the KDR receptor disrupts lung vascular growth, alters vasoreactivity, and causes pulmonary hypertension; and 4) whether VEGF treatment improves endothelial function and vascular growth in experimental PPHN. Studies will utilize the chronically-prepared fetal lamb model to provide an integrative physiologic approach that combines whole animal physiology with molecular, biochemical, and morphometric studies.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
1P01HL066254-01A1
Application #
6530308
Study Section
Heart, Lung, and Blood Program Project Review Committee (HLBP)
Project Start
2001-09-17
Project End
2006-07-31
Budget Start
Budget End
Support Year
1
Fiscal Year
2001
Total Cost
Indirect Cost
Name
University of Colorado Denver
Department
Type
DUNS #
065391526
City
Aurora
State
CO
Country
United States
Zip Code
80045
Sakao, Seiichiro; Tatsumi, Koichiro; Voelkel, Norbert F (2010) Reversible or irreversible remodeling in pulmonary arterial hypertension. Am J Respir Cell Mol Biol 43:629-34
Sakao, Seiichiro; Tatsumi, Koichiro; Voelkel, Norbert F (2009) Endothelial cells and pulmonary arterial hypertension: apoptosis, proliferation, interaction and transdifferentiation. Respir Res 10:95
Rai, Pradeep R; Cool, Carlyne D; King, Judy A C et al. (2008) The cancer paradigm of severe pulmonary arterial hypertension. Am J Respir Crit Care Med 178:558-64
Taraseviciene-Stewart, Laimute; Nicolls, Mark R; Kraskauskas, Donatas et al. (2007) Absence of T cells confers increased pulmonary arterial hypertension and vascular remodeling. Am J Respir Crit Care Med 175:1280-9
Tuder, Rubin M; Marecki, John C; Richter, Amy et al. (2007) Pathology of pulmonary hypertension. Clin Chest Med 28:23-42, vii
Sakao, Seiichiro; Taraseviciene-Stewart, Laimute; Cool, Carlyne D et al. (2007) VEGF-R blockade causes endothelial cell apoptosis, expansion of surviving CD34+ precursor cells and transdifferentiation to smooth muscle-like and neuronal-like cells. FASEB J 21:3640-52
Oka, Masahiko; Homma, Noriyuki; Taraseviciene-Stewart, Laimute et al. (2007) Rho kinase-mediated vasoconstriction is important in severe occlusive pulmonary arterial hypertension in rats. Circ Res 100:923-9
Sakao, Seiichiro; Taraseviciene-Stewart, Laimute; Wood, Kathy et al. (2006) Apoptosis of pulmonary microvascular endothelial cells stimulates vascular smooth muscle cell growth. Am J Physiol Lung Cell Mol Physiol 291:L362-8
Taraseviciene-Stewart, Laimute; Scerbavicius, Robertas; Choe, Kang-Hyeon et al. (2006) Simvastatin causes endothelial cell apoptosis and attenuates severe pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 291:L668-76
Taraseviciute, Agne; Voelkel, Norbert F (2006) Severe pulmonary hypertension in postmenopausal obese women. Eur J Med Res 11:198-202

Showing the most recent 10 out of 20 publications