Pulmonary microvascular endothelial cells (PMVECs) form contiguous, semi-permeable barriers between the bloodstream and the interstitial space. cAMP generated by plasma membrane-localized adenylyl cyclases (ACs) enhances PMVEC barriers. In contrast, cytosolic cAMP, cGMP, and cUMP generated by exogenous and endogenous soluble cyclases disrupt PMVEC barriers. These observations suggest that cyclic nucleotide signals are highly localized, or compartmentalized, and that near-membrane and cytosolic cAMP, cGMP, and perhaps cUMP signals have opposing effects on endothelial function in the lung microvasculature. The concept of compartmentalized signals implies that feedback networks localized to specific subcellular domains control the kinetics of second messenger signals. However, our understanding of the physiological and pathophysiological implications of localized feedback networks within pulmonary endothelial cells is at best rudimentary. Thus, the overall goal of this project is to determine the spatial and temporal relationships between compartmentalized cAMP signals, PKA-mediated feedback networks, and regulation of mechanical forces in pulmonary endothelial cells. Experiments described in this proposal will for the first time identify where cAMP signals occur in the 3D space of PMVECs, identify important temporal components of cAMP signals, and chart feedback mechanisms contributing to signal localization and kinetics of these signals. In other words, we will provide roadmaps identifying the spatial locations of cAMP signals that are critical for controlling the dynamics of cellular forces. We will then overlay these responses onto PKA activity maps and underlying distributions of A kinase anchoring proteins (AKAPs). As such, successful completion of the studies proposed in this application will identify the spatial and temporal fingerprints of specific cAMP signalosomes that regulate mechanical forces within pulmonary endothelial cells, and thus control endothelial barrier integrity. The spatial and temporal fingerprints will direct future studies aimed at identifying target proteins within these signalosomes, leading to both a better understanding of the molecular mechanisms underlying localized signal transduction and identifying translational targets within signalosomes.

Public Health Relevance

Acute respiratory distress syndrome (ARDS) is a syndrome that disrupts the mechanical forces within the endothelium lining the lung which in turn leads to a breakdown of the endothelial barrier disrupting oxygen delivery to the blood. Our work focuses on understanding how G protein coupled receptor signaling pathways alter intracellular signaling that regulate mechanical forces transmitted through the pulmonary endothelium, and thus, lung endothelial barrier function.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
2P01HL066299-16A1
Application #
9416710
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Program Officer
Xiao, Lei
Project Start
Project End
Budget Start
2017-09-01
Budget End
2018-08-31
Support Year
16
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of South Alabama
Department
Type
DUNS #
172750234
City
Mobile
State
AL
Country
United States
Zip Code
36688
Khozhukhar, Natalya; Spadafora, Domenico; Rodriguez, Yelitza et al. (2018) Elimination of Mitochondrial DNA from Mammalian Cells. Curr Protoc Cell Biol 78:20.11.1-20.11.14
Leavesley, Silas J; Sweat, Brenner; Abbott, Caitlyn et al. (2018) A theoretical-experimental methodology for assessing the sensitivity of biomedical spectral imaging platforms, assays, and analysis methods. J Biophotonics 11:
Lin, Mike T; Balczon, Ron; Pittet, Jean-Francois et al. (2018) Nosocomial Pneumonia Elicits an Endothelial Proteinopathy: Evidence for a Source of Neurotoxic Amyloids in Critically Ill Patients. Am J Respir Crit Care Med :
Parker, James C (2018) Mitochondrial damage pathways in ventilator induced lung injury (VILI): an update. J Lung Health Dis 2:18-22
Balczon, Ron; Morrow, K Adam; Zhou, Chun et al. (2017) Pseudomonas aeruginosa infection liberates transmissible, cytotoxic prion amyloids. FASEB J 31:2785-2796
Shokolenko, Inna N; Alexeyev, Mikhail F (2017) Mitochondrial transcription in mammalian cells. Front Biosci (Landmark Ed) 22:835-853
Morrow, K Adam; Frank, Dara W; Balczon, Ron et al. (2017) The Pseudomonas aeruginosa Exoenzyme Y: A Promiscuous Nucleotidyl Cyclase Edema Factor and Virulence Determinant. Handb Exp Pharmacol 238:67-85
Blair, Leslie A; Haven, April K; Bauer, Natalie N (2016) Circulating microparticles in severe pulmonary arterial hypertension increase intercellular adhesion molecule-1 expression selectively in pulmonary artery endothelium. Respir Res 17:133
Spadafora, Domenico; Kozhukhar, Natalia; Alexeyev, Mikhail F (2016) Presequence-Independent Mitochondrial Import of DNA Ligase Facilitates Establishment of Cell Lines with Reduced mtDNA Copy Number. PLoS One 11:e0152705
Jian, Ming-Yuan; Liu, Yanping; Li, Qian et al. (2016) N-cadherin coordinates AMP kinase-mediated lung vascular repair. Am J Physiol Lung Cell Mol Physiol 310:L71-85

Showing the most recent 10 out of 122 publications