Among diabetics, peripheral neuropathy is common and ultimately accounts for significant morbidity. The ultimate consequence of such sensory deficits involving the lower extremities may be foot ulceration initiated by trauma that is inapparent to the pt. Such ulcerations often lead to lower extremity amputation, a complication that is 15 times higher in diabetic versus non-diabetic pts. Preliminary clinical studies have demonstrated improvement in signs and symptoms of sensory neuropathy in pts with lower extremity vascular occlusive disease following intramuscular injection of naked DNA encoding vascular endothelial growth factor (VEGF). To determine if such a strategy could be applied to diabetic pts, including those without evidence of large vessel occlusive disease, we investigated the hypothesis that experimental diabetic neuropathy results from destruction of the vasa nervorum and can be reversed by administration of an angiogenic growth factor. In two different animal models of diabetes, nerve blood flow and the number of vasa nervorum were found to be markedly attenuated resulting in severe peripheral neuropathy. In contrast, following VEGF gene transfer, vascular and blood flow in nerves of treated animals were similar to those of non-diabetic controls; constitutive over-expression of VEGF resulted in restoration of large and small fiber peripheral nerve function. These findings implicate microvascular disruption as the basis for diabetic neuropathy and suggest that angiogenic growth factors may constitution a novel treatment strategy for this pernicious disorder. Accordingly, we now seek to address the following two specific aims: 1.
Specific Aim #1 : To evaluate the safety and impact of VEGF gene transfer on sensory neuropathy in pts with diabetes and associated lower extremity macrovascular disease; and 2.
Specific Aim #2 : To evaluate the safety and impact of VEGF gene transfer on sensory neuropathy in pts with diabetes without lower extremity macrovascular disease.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL066957-05
Application #
7123943
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2006-01-01
Budget End
2008-08-31
Support Year
5
Fiscal Year
2005
Total Cost
$228,075
Indirect Cost
Name
St. Elizabeth's Medical Center of Boston
Department
Type
DUNS #
073797292
City
Boston
State
MA
Country
United States
Zip Code
01235
Sekiguchi, Haruki; Ii, Masaaki; Jujo, Kentaro et al. (2013) Estradiol promotes neural stem cell differentiation into endothelial lineage and angiogenesis in injured peripheral nerve. Angiogenesis 16:45-58
Sekiguchi, Haruki; Ii, Masaaki; Jujo, Kentaro et al. (2012) Estradiol triggers sonic-hedgehog-induced angiogenesis during peripheral nerve regeneration by downregulating hedgehog-interacting protein. Lab Invest 92:532-42
Webber, Matthew J; Tongers, Jorn; Newcomb, Christina J et al. (2011) Supramolecular nanostructures that mimic VEGF as a strategy for ischemic tissue repair. Proc Natl Acad Sci U S A 108:13438-43
Roncalli, Jerome; Renault, Marie-Ange; Tongers, Jorn et al. (2011) Sonic hedgehog-induced functional recovery after myocardial infarction is enhanced by AMD3100-mediated progenitor-cell mobilization. J Am Coll Cardiol 57:2444-52
Webber, Matthew J; Tongers, Jörn; Renault, Marie-Ange et al. (2010) Development of bioactive peptide amphiphiles for therapeutic cell delivery. Acta Biomater 6:3-11
Ii, Masaaki; Takeshita, Kyosuke; Ibusuki, Kayoko et al. (2010) Notch signaling regulates endothelial progenitor cell activity during recovery from arterial injury in hypercholesterolemic mice. Circulation 121:1104-12
Ii, Masaaki; Hoshiga, Masaaki; Negoro, Nobuyuki et al. (2009) Adrenal androgen dehydroepiandrosterone sulfate inhibits vascular remodeling following arterial injury. Atherosclerosis 206:77-85
Losordo, Douglas W; Kishore, Raj (2009) A big promise from the very small identification of circulating embryonic stem-like pluripotent cells in patients with acute myocardial infarction. J Am Coll Cardiol 53:10-2
Zhou, Junlan; Zhu, Yan; Cheng, Min et al. (2009) Regulation of vascular contractility and blood pressure by the E2F2 transcription factor. Circulation 120:1213-21
Ropper, Allan H; Gorson, Kenneth C; Gooch, Clifton L et al. (2009) Vascular endothelial growth factor gene transfer for diabetic polyneuropathy: a randomized, double-blinded trial. Ann Neurol 65:386-93

Showing the most recent 10 out of 29 publications