Inhaled particulates such as asbestos damage lung epithelial cells which in turn, triggers a compensatory proliferative response and ultimately fibroproliferative lung diseases. The cell signaling events that mediate this constellation of events in the various lung cell types are not fully known. However, our preliminary data in animal and cell culture models demonstrate that asbestos-induced activation of protein kinase C (PKC) is an early event in asbestos-associated outcomes. Furthermore, certain effects of asbestos, including some that are functionally related to proliferation, injury and changes in gene expression, are PKC-dependent. PKCs are a family of Ser/Thr kinases with selective functions. Thus, we propose to determine which PKC isoforms are activated by asbestos and which PKC isoforms modify activities of MAPKs and AP-1 dependent gene expression. These studies will provide mechanistic information on asbestos-mediated signaling events. Finally, we propose to generate animals that are genetically altered to have decreased functional PKCdelta in lung epithelial cells. These animals will be used in inhalation studies to specifically evaluate the role of PKCdelta in epithelial cell proliferation and fibroproliferative disease. Using asbestos as a model, these studies have broader implications for the role of individual PKCs in other types of lung pathologies as well.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL067004-05
Application #
7056716
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2005-05-01
Budget End
2006-04-30
Support Year
5
Fiscal Year
2005
Total Cost
$176,298
Indirect Cost
Name
University of Vermont & St Agric College
Department
Type
DUNS #
066811191
City
Burlington
State
VT
Country
United States
Zip Code
05405
Sayan, Mutlay; Mossman, Brooke T (2016) The NLRP3 inflammasome in pathogenic particle and fibre-associated lung inflammation and diseases. Part Fibre Toxicol 13:51
Sabo-Attwood, Tara; Ramos-Nino, Maria E; Eugenia-Ariza, Maria et al. (2011) Osteopontin modulates inflammation, mucin production, and gene expression signatures after inhalation of asbestos in a murine model of fibrosis. Am J Pathol 178:1975-85
Buder-Hoffmann, Sylke A; Shukla, Arti; Barrett, Trisha F et al. (2009) A protein kinase Cdelta-dependent protein kinase D pathway modulates ERK1/2 and JNK1/2 phosphorylation and Bim-associated apoptosis by asbestos. Am J Pathol 174:449-59
Janssen-Heininger, Yvonne M W; Mossman, Brooke T; Heintz, Nicholas H et al. (2008) Redox-based regulation of signal transduction: principles, pitfalls, and promises. Free Radic Biol Med 45:1-17
Manning, Christopher B; Sabo-Attwood, Tara; Robledo, Raymond F et al. (2008) Targeting the MEK1 cascade in lung epithelium inhibits proliferation and fibrogenesis by asbestos. Am J Respir Cell Mol Biol 38:618-26
Barlow, Christy A; Kitiphongspattana, Kajorn; Siddiqui, Nazli et al. (2008) Protein kinase A-mediated CREB phosphorylation is an oxidant-induced survival pathway in alveolar type II cells. Apoptosis 13:681-92
Fukagawa, Naomi K; Li, Muyao; Sabo-Attwood, Tara et al. (2008) Inhaled asbestos exacerbates atherosclerosis in apolipoprotein E-deficient mice via CD4+ T cells. Environ Health Perspect 116:1218-25
Mossman, Brooke T (2008) Assessment of the pathogenic potential of asbestiform vs. nonasbestiform particulates (cleavage fragments) in in vitro (cell or organ culture) models and bioassays. Regul Toxicol Pharmacol 52:S200-3
Levis, Jamie; Loi, Roberto; Butnor, Kelly J et al. (2008) Decreased asbestos-induced lung inflammation and fibrosis after radiation and bone marrow transplant. Am J Respir Cell Mol Biol 38:16-25
Dostert, Catherine; Petrilli, Virginie; Van Bruggen, Robin et al. (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320:674-7

Showing the most recent 10 out of 58 publications