The contribution of the heart's specialized conduction system to arrhythmia initiation is not completely understood. While Purkinje fibers are considered a potent source for the initiating extrasystoles in focal and reentrant ventricular arrhythmias, recent suggests a contribution of Purkinje-myocardial reentry to polymorphic tachycardia that can precede fibrillation and sudden death. Our main objective is to investigate how reentrant circuits distribute between the peripheral conduction system and overlying myocardium during early cycles of sub-endocardially- induced ventricular arrhythmias. We believe those circuits circumscribe functional centers that are primarily located on the peripheral conduction system-myocardial interface, where the two components are weakly coupled via the system of discrete Purkinje-ventricular junctions (PVJs). We hypothesize this arrangement establishes peripheral conduction system and myocardial wavefronts that are out of phase with one another, which places critical importance about the ability of premature action potentials to propagate from peripheral conduction system to myocardium, i.e. antegrade PVJ conduction, for reentry maintenance. Antegrade PVJ conduction is inherent discontinuous because the myocardium imposes a large electrical load on peripheral conduction system. Experiments to test this hypothesis will use 1056-channel electrical mapping from perfused rabbit right ventricular free wall surfaces. Companion stimulations will incorporate membrane equations for ionic currents into detailed grids replicating the interface. The project has two aims.
The first aim i s to establish the relationship between antegrade PVJ PVJ conduction and subendocardially induced ventricular arrhythmias in macroscopically normal hearts.
The second aim i s to correlate regional acute ischemia and healing myocardial infarction with peripheral conduction system participation during subendocardially induced ventricular tachycardia.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL067961-02
Application #
6630621
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
2002-08-01
Project End
2003-07-31
Budget Start
2002-08-01
Budget End
2003-07-31
Support Year
2
Fiscal Year
2002
Total Cost
$164,585
Indirect Cost
Name
University of Alabama Birmingham
Department
Type
DUNS #
004514360
City
Birmingham
State
AL
Country
United States
Zip Code
35294
Walcott, Gregory P; Melnick, Sharon B; Killingsworth, Cheryl R et al. (2010) Comparison of low-energy versus high-energy biphasic defibrillation shocks following prolonged ventricular fibrillation. Prehosp Emerg Care 14:62-70
Walcott, Gregory; Melnick, Sharon; Killingsworth, Cheryl et al. (2009) Burst stimulation improves hemodynamics during resuscitation after prolonged ventricular fibrillation. Circ Arrhythm Electrophysiol 2:57-62
Doppalapudi, Harish; Jin, Qi; Dosdall, Derek J et al. (2008) Intracoronary infusion of catecholamines causes focal arrhythmias in pigs. J Cardiovasc Electrophysiol 19:963-70
Dosdall, Derek J; Cheng, Kang-An; Huang, Jian et al. (2007) Transmural and endocardial Purkinje activation in pigs before local myocardial activation after defibrillation shocks. Heart Rhythm 4:758-65
Dosdall, Derek J; Ideker, Raymond E (2007) Intracardiac atrial defibrillation. Heart Rhythm 4:S51-6
Kong, Wei; Huang, Jian; Rollins, Dennis L et al. (2007) A semi-implantable multichannel telemetry system for continuous electrical, mechanical and hemodynamical recordings in animal cardiac research. Physiol Meas 28:249-57
Lan, David Z; Pollard, Andrew E; Knisley, Stephen B et al. (2007) Optical mapping of V(m) and Ca(i)(2+) in a model of arrhythmias induced by local catecholamine application in patterned cell cultures. Pflugers Arch 453:871-7
Raman, Vidya; Pollard, Andrew E; Fast, Vladimir G (2007) Shock-induced changes of Ca(i)2+ and Vm in myocyte cultures and computer model: Dependence on the timing of shock application. Cardiovasc Res 73:101-10
Spitzer, Kenneth W; Pollard, Andrew E; Yang, Lin et al. (2006) Cell-to-cell electrical interactions during early and late repolarization. J Cardiovasc Electrophysiol 17 Suppl 1:S8-S14
Pollard, Andrew E; Barr, Roger C (2006) Cardiac microimpedance measurement in two-dimensional models using multisite interstitial stimulation. Am J Physiol Heart Circ Physiol 290:H1976-87

Showing the most recent 10 out of 35 publications