The cardiac myocyte has long been the primary focus of most studies attempting to elucidate the signaling mechanisms underlying heart failure. More recently the involvement of nonmyocytes has emerged as potentially just as important as myocytes in contributing to and controlling cardiac remodeling and progressive pathogenesis in heart failure. Specifically, the cardiac fibroblast and its ability to convert to myofibroblasts in promoting the fibrotic response and ventricular remodeling appears to be a highly underappreciated disease process with significant ramifications. Fibroblasts are activated in the heart in response to damage or due to neuroendocrine signaling, such as through Transforming Growth Factor Beta (TGFp). Here we hypothesize that the fibroblast responds to TGFp and other cytokines through select signaling pathways in promoting the fibrotic response and maladaptive remodeling in heart failure. We will examine both canonical (Smad2/3) and non-canonical (TAK1/p38a) TGFp signaling within fibroblasts to determine how these cells and their activation mediate disease in heart failure. All previous in vivo analyses of TGFp signaling and cardiac fibrosis have focused on the myocytes given available genetic tools. However, we have recently engineered a novel fibroblast-specific knock-in mouse iinodel to permit tamoxifen-regulated Cre activity in vivo. We will use this mouse to study fibroblast-based signaling during the development of cardiac disease.
Aim #1 will determine the necessary function of canonical TGFp signaling and Smad proteins in mediating cardiac fibrosis within the cardiac fibroblast itself.
Aim #2 will exaniine the role that non-canonical TGFp signaling plays through TAKI and p38a MAPK in mediating cardiac fibrosis, andj once again, our focus will be on signaling within the cardiac fibroblast only.
Aim #3 will examine a novel pathway that is calcium-TRPC6 activated and works in conjunction with TGFp signaling and other cytokines to pi^omote myofibroblast transdifferentiation in the heart and disease. These 3 specific aims will suggest for the first time the autonomous role for select signaling pathways from within the cardiac fibroblast in mediating myofibroblast transdifferentiation and fibrotic disease in the diseased heart. A number of potential therapeutic angles are suggested from the content of our project and emerging preliminary data.

Public Health Relevance

Our work focuses on the cardiac fibroblast, a cell in the heart that is known to be important in the scarring processes and remodeling that occur after cardiac injury. We intend to study how this cell functions during these disease processes and attempt to modulate its actions so that we can impact favorably on cardiac disease and heart failure.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL069779-15
Application #
9281816
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Program Officer
Adhikari, Bishow B
Project Start
Project End
2019-05-31
Budget Start
2017-06-01
Budget End
2018-05-31
Support Year
15
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Cincinnati Children's Hospital Medical Center
Department
Type
DUNS #
071284913
City
Cincinnati
State
OH
Country
United States
Zip Code
45229
Singh, Sonia R; Robbins, Jeffrey (2018) Desmin and Cardiac Disease: An Unfolding Story. Circ Res 122:1324-1326
Lowey, Susan; Bretton, Vera; Joel, Peteranne B et al. (2018) Hypertrophic cardiomyopathy R403Q mutation in rabbit ?-myosin reduces contractile function at the molecular and myofibrillar levels. Proc Natl Acad Sci U S A 115:11238-11243
Valiente-Alandi, IƱigo; Potter, Sarah J; Salvador, Ane M et al. (2018) Inhibiting Fibronectin Attenuates Fibrosis and Improves Cardiac Function in a Model of Heart Failure. Circulation 138:1236-1252
Meng, Qinghang; Bhandary, Bidur; Bhuiyan, Md Shenuarin et al. (2018) Myofibroblast-Specific TGF? Receptor II Signaling in the Fibrotic Response to Cardiac Myosin Binding Protein C-Induced Cardiomyopathy. Circ Res 123:1285-1297
Singh, Sonia R; Zech, Antonia T L; Geertz, Birgit et al. (2017) Activation of Autophagy Ameliorates Cardiomyopathy in Mybpc3-Targeted Knockin Mice. Circ Heart Fail 10:
Xiang, Fu-Li; Fang, Ming; Yutzey, Katherine E (2017) Loss of ?-catenin in resident cardiac fibroblasts attenuates fibrosis induced by pressure overload in mice. Nat Commun 8:712
Kamal, Fadia A; Travers, Joshua G; Schafer, Allison E et al. (2017) G Protein-Coupled Receptor-G-Protein ??-Subunit Signaling Mediates Renal Dysfunction and Fibrosis in Heart Failure. J Am Soc Nephrol 28:197-208
Khalil, Hadi; Kanisicak, Onur; Prasad, Vikram et al. (2017) Fibroblast-specific TGF-?-Smad2/3 signaling underlies cardiac fibrosis. J Clin Invest 127:3770-3783
McLendon, Patrick M; Davis, Gregory; Gulick, James et al. (2017) An Unbiased High-Throughput Screen to Identify Novel Effectors That Impact on Cardiomyocyte Aggregate Levels. Circ Res 121:604-616
Rudomanova, Valeria; Blaxall, Burns C (2017) Targeting GPCR-G??-GRK2 signaling as a novel strategy for treating cardiorenal pathologies. Biochim Biophys Acta Mol Basis Dis 1863:1883-1892

Showing the most recent 10 out of 131 publications