Viral respiratory tract infections have been implicated in the pathogenesis of childhood asthma,but responsible mechanisms either related to host susceptibility or virulence patterns of specific viruses remain unestablished. This Program Project Grant renewal application will expand on a novel unsuspected finding during the current funding period: infants who wheeze with rhinovirus (RV) (the common cold virus) during infancy are significantly at risk for developing childhood asthma. We therefore hypothesize that RV infections during childhood and adolescence contribute significantly to childhood wheezing and asthma inception/exacerbation due to abnormal host innate immune responses and/or based on the virulence patterns of specific strains of rhinovirus producing these illnesses. Moreover, these abnormal responses to rhinovirus infections may be further modulated by the host's stage of development (infancy, childhood, and adolescence), gender, and gene by environment interactions. The components of this PPG application, both multidisciplinary and integrated, include 4 projects and 3 cores. Project I will continue comprehensive phenotypic characterization of the cohort that has been and will be the primary resource for data acquisition related to viral epidemiology, molecular virology, molecular biology, and genetic studies involving Project IIIV and the Virology Core. Further, it will evaluate host susceptibility to viral infections that are related to deficiencies in interferon responses within various tissue compartments. Project II will establish if specific RV serotypes or other respiratory pathogens are more likely to induce wheezing illnesses and asthma and the molecular basis for these increased virulence patterns. Project III will analyze mechanisms involved in RVregulated intracellular signaling pathways in both monocyte/macrophages and airway epithelial cells that underlie host susceptibility to RV-induced asthma. Project IV will focus on genes involved in RV pathways, study the mechanisms underlying the observed gene-environment interactions with RV infection and sex, and further characterize the role of micro RNAs in modulating variable responses to RV infection and the subsequent risk for asthma.

Public Health Relevance

This grant will define mechanisms by which viral infections impact on the clinical expression of childhood asthma that will be relevant for the development of therapies aimed at both acute treatment (anti-viral medications) and primary prevention (vaccines).

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL070831-08
Application #
7813911
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Program Officer
Noel, Patricia
Project Start
2002-08-01
Project End
2013-04-30
Budget Start
2010-05-01
Budget End
2011-04-30
Support Year
8
Fiscal Year
2010
Total Cost
$2,126,484
Indirect Cost
Name
University of Wisconsin Madison
Department
Pediatrics
Type
Schools of Medicine
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Bashir, Hiba; Grindle, Kristine; Vrtis, Rose et al. (2018) Association of rhinovirus species with common cold and asthma symptoms and bacterial pathogens. J Allergy Clin Immunol 141:822-824.e9
Higano, Nara S; Bates, Alister J; Tkach, Jean A et al. (2018) Pre- and post-operative visualization of neonatal esophageal atresia/tracheoesophageal fistula via magnetic resonance imaging. J Pediatr Surg Case Rep 29:5-8
Higano, Nara S; Spielberg, David R; Fleck, Robert J et al. (2018) Neonatal Pulmonary Magnetic Resonance Imaging of Bronchopulmonary Dysplasia Predicts Short-Term Clinical Outcomes. Am J Respir Crit Care Med 198:1302-1311
Stein, Michelle M; Thompson, Emma E; Schoettler, Nathan et al. (2018) A decade of research on the 17q12-21 asthma locus: Piecing together the puzzle. J Allergy Clin Immunol 142:749-764.e3
Bønnelykke, Klaus; Coleman, Amaziah T; Evans, Michael D et al. (2018) Cadherin-related Family Member 3 Genetics and Rhinovirus C Respiratory Illnesses. Am J Respir Crit Care Med 197:589-594
Ober, Carole; Sperling, Anne I; von Mutius, Erika et al. (2017) Immune development and environment: lessons from Amish and Hutterite children. Curr Opin Immunol 48:51-60
Hahn, Andrew D; Higano, Nara S; Walkup, Laura L et al. (2017) Pulmonary MRI of neonates in the intensive care unit using 3D ultrashort echo time and a small footprint MRI system. J Magn Reson Imaging 45:463-471
Rubner, Frederick J; Jackson, Daniel J; Evans, Michael D et al. (2017) Early life rhinovirus wheezing, allergic sensitization, and asthma risk at adolescence. J Allergy Clin Immunol 139:501-507
Turunen, Riitta; Vuorinen, Tytti; Bochkov, Yury et al. (2017) Clinical and Virus Surveillance After the First Wheezing Episode: Special Reference to Rhinovirus A and C Species. Pediatr Infect Dis J 36:539-544
Liu, Y-P; Rajamanikham, V; Baron, M et al. (2017) Association of ORMDL3 with rhinovirus-induced endoplasmic reticulum stress and type I Interferon responses in human leucocytes. Clin Exp Allergy 47:371-382

Showing the most recent 10 out of 157 publications