The Beta3 integrins play critical roles in the biological responses of cells exposed to blood. On platelets, allb33 is indispensable for platelet aggregation and thrombus formation and is a target for anti-thrombotic drugs. On endothelial cells, aV(33 is a major regulator of in angiogenesis and is also the target for drugs that suppress angiogenesis. The involvement of the two (B3 integrins in physiological and pathophysiological processes depends upon signaling across the integrins;inside-out signaling to control the activation state of the integrins and outside-in signaling to control cytoskeletal connections and a myriad of intracellular responses. Both arms of the bidirectional signaling across (B3 integrins as well as all integrins depend upon interaction of their cytoplasmic tails (CT) with binding partners. This proposal focuses on two particular binding partners of the (B3 integrins: two (Kindlin-2 and Kindlin-3) of the three member Kindlin family and one of the scr family kinases, Fyn. The hypotheses to be tested are that the two Kindlins are key regulators of the inside-out signals that lead to integrin activation and that Fyn binds differently than scr to the (B3 CT and, thereby, exerts distinct effects in controlling outside-in signaling events.
Three specific aims are proposed to test these hypotheses.
Specific Aim 1 focuses on the structure-function relationships that govern the interactions between Kindlin-2 and Kindlin-3 and B3 BT and other integrins. The ability of the Kindlins to directly induce integrin activation or to synergize with talin inside-out signaling will be examined;the mechanisms underlying the co-activator activities of the Kindlins and the structural details of the Kindlin-B3 CT interaction will be determined.
Specific Aim 2 will emphasize the effects of the Kindlins on integrin-mediated responses in platelets, megakaryocytes and endothelial cells. These analyses will involve in modulating Kindlin levels and functions in these cells using siRNA and membrane permeable peptides. The effects of reduced levels of Kindlin-2 in vivo will also be analyzed in mice.
Specific Aim 3 is predicated on the recent observation that Fyn binds to a site in the membrane proximal region of the B3 CT. The molecular details of the differential interactions of the Fyn and Scr with the B3 CT and the functional consequences of Fyn binding to this site will be determined in platelets and endothelial cells and in vivo assays of thrombosis and angiogenesis in Fyn and Scr deficient mice. Taken together, these studies will provide key insights into the way responses of the B3 integrins are initiated and propagated. This information may, in turn, establish more effective ways to design anti-thrombotic and anti-angiogenic drugs that target the B3 integrins and other integrin family members.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL073311-09
Application #
8378024
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2012-05-01
Budget End
2013-04-30
Support Year
9
Fiscal Year
2012
Total Cost
$367,775
Indirect Cost
$100,484
Name
Cleveland Clinic Lerner
Department
Type
DUNS #
135781701
City
Cleveland
State
OH
Country
United States
Zip Code
44195
Szpak, Dorota; Izem, Lahoucine; Verbovetskiy, Dmitriy et al. (2018) ?M?2 Is Antiatherogenic in Female but Not Male Mice. J Immunol 200:2426-2438
Plow, Edward F; Wang, Yunmei; Simon, Daniel I (2018) The search for new antithrombotic mechanisms and therapies that may spare hemostasis. Blood 131:1899-1902
Sossey-Alaoui, Khalid; Pluskota, Elzbieta; Szpak, Dorota et al. (2018) The Kindlin-2 regulation of epithelial-to-mesenchymal transition in breast cancer metastasis is mediated through miR-200b. Sci Rep 8:7360
Gao, Detao; Podrez, Eugene A (2018) Characterization of covalent modifications of HDL apoproteins by endogenous oxidized phospholipids. Free Radic Biol Med 115:57-67
Biswas, Sudipta; Zimman, Alejandro; Gao, Detao et al. (2017) TLR2 Plays a Key Role in Platelet Hyperreactivity and Accelerated Thrombosis Associated With Hyperlipidemia. Circ Res 121:951-962
Wang, Yunmei; Gao, Huiyun; Shi, Can et al. (2017) Leukocyte integrin Mac-1 regulates thrombosis via interaction with platelet GPIb?. Nat Commun 8:15559
Meller, Julia; Chen, Zhihong; Dudiki, Tejasvi et al. (2017) Integrin-Kindlin3 requirements for microglial motility in vivo are distinct from those for macrophages. JCI Insight 2:
Hirbawi, Jamila; Bialkowska, Katarzyna; Bledzka, Kamila M et al. (2017) The extreme C-terminal region of kindlin-2 is critical to its regulation of integrin activation. J Biol Chem 292:14258-14269
Ithychanda, Sujay S; Dou, Kevin; Robertson, Stephen P et al. (2017) Structural and thermodynamic basis of a frontometaphyseal dysplasia mutation in filamin A. J Biol Chem 292:8390-8400
Feng, Weiyi; Valiyaveettil, Manojkumar; Dudiki, Tejasvi et al. (2017) ?3 phosphorylation of platelet ?IIb?3 is crucial for stability of arterial thrombus and microparticle formation in vivo. Thromb J 15:22

Showing the most recent 10 out of 105 publications