The animal core will provide materials (Data Sciences transmitters) and surgical service for instrumentation of rats and mice for chronic measurement of mean arterial pressure, heart rate, and motor activity. Daily care, metabolic data collection, and data acquisition and tabulation from the Data Sciences systems also will be a responsibility of the core, as well as supplemental analyses such as diurnal blood pressure and heart rate variability determinations. Implantation of these animals with osmotic minipumps also will be the responsibility of the core. The core also will provide to all investigators the materials and surgical service for chronic intravenous infusion, repeated arterial blood sampling, and chronic measurement of mean arterial pressure and heart rate in rats. The same computerized data collection and supplemental analyses available for the telemetry studies also will be available for these rats.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL074167-03
Application #
7228248
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
2006-05-01
Project End
2009-04-30
Budget Start
2006-05-01
Budget End
2007-04-30
Support Year
3
Fiscal Year
2006
Total Cost
$263,190
Indirect Cost
Name
Georgia Health Sciences University
Department
Type
DUNS #
966668691
City
Augusta
State
GA
Country
United States
Zip Code
30912
Guan, Z; Wang, F; Cui, X et al. (2018) Mechanisms of sphingosine-1-phosphate-mediated vasoconstriction of rat afferent arterioles. Acta Physiol (Oxf) 222:
Guan, Zhengrong; Singletary, Sean T; Cha, Haword et al. (2016) Pentosan polysulfate preserves renal microvascular P2X1 receptor reactivity and autoregulatory behavior in DOCA-salt hypertensive rats. Am J Physiol Renal Physiol 310:F456-65
Guan, Zhengrong; Singletary, Sean T; Cook, Anthony K et al. (2014) Sphingosine-1-phosphate evokes unique segment-specific vasoconstriction of the renal microvasculature. J Am Soc Nephrol 25:1774-85
Guan, Zhengrong; Fellner, Robert C; Van Beusecum, Justin et al. (2014) P2 receptors in renal autoregulation. Curr Vasc Pharmacol 12:818-28
Lobato, Nubia S; Filgueira, Fernando P; Prakash, Roshini et al. (2013) Reduced endothelium-dependent relaxation to anandamide in mesenteric arteries from young obese Zucker rats. PLoS One 8:e63449
Guan, Zhengrong; Giddens, Matthew I; Osmond, David A et al. (2013) Immunosuppression preserves renal autoregulatory function and microvascular P2X(1) receptor reactivity in ANG II-hypertensive rats. Am J Physiol Renal Physiol 304:F801-7
Speed, Joshua S; Pollock, David M (2013) Endothelin, kidney disease, and hypertension. Hypertension 61:1142-5
Lima, Victor V; Giachini, Fernanda R; Carneiro, Fernando S et al. (2011) O-GlcNAcylation contributes to the vascular effects of ET-1 via activation of the RhoA/Rho-kinase pathway. Cardiovasc Res 89:614-22
Choi, Hyehun; Tostes, Rita C; Webb, R Clinton (2011) S-nitrosylation Inhibits protein kinase C-mediated contraction in mouse aorta. J Cardiovasc Pharmacol 57:65-71
Inscho, Edward W; Cook, Anthony K; Clarke, Andrea et al. (2011) P2X1 receptor-mediated vasoconstriction of afferent arterioles in angiotensin II-infused hypertensive rats fed a high-salt diet. Hypertension 57:780-7

Showing the most recent 10 out of 125 publications