Disordered fibrin turnover has been implicated in the pathogenesis of pleural inflammation and repair. We hypothesize that deranged regulation of plasminogen activator inhibitor-1 (PAI-1) and of the urokinase receptor (uPAR) in pleural mesothelial cells are critical determinants of locally impaired fibrinolysis and intrapleural remodeling after asbestos exposure or in fibrosing pleuritis. Mechanisms that regulate expression of these proteins in mesothelial cells are now poorly understood. We will extend work done in previous funding cycles to address these important gaps. We will achieve this objective in four closely integrated specific aims.
In Aim 1, we will determine mechanisms that regulate the expression of PAI-1 and uPAR in mesothelial cells exposed to asbestos or mediators of fibrosing pleural injury.
In Aims 2 and 3, we will elucidate mechanism(s) by which PAI-1 is regulated by pleural mesothelial cells at the posttranscriptional level and will determine how control at this level influences pathophysiologic responses of these cells.
In Aim 4, we will further test a novel interventional approach; intrapleural administration of single-chain uPA (scuPA) to prevent pleural loculation. We will use our established rabbit models of tetracycline- or P. multocida induced pleural injury in these studies. To accomplish the work, we will use a wide range of molecular, biochemical and histologic techniques, all of which are well-established in our laboratory. These studies will foster better understanding of the role of the mesothelial cell in the regulation of the PAI-1-uPA-uPAR system and will increase our understanding of how these cells contribute to pleural remodeling after injury. The project will also facilitate the development of novel, clinically applicable non-surgical approaches to prevent intrapleural loculation and its associated morbidity.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
1P01HL076406-01A1
Application #
7029467
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
2005-04-01
Project End
2010-03-31
Budget Start
2005-04-01
Budget End
2006-08-31
Support Year
1
Fiscal Year
2005
Total Cost
$358,622
Indirect Cost
Name
University of Texas Health Center at Tyler
Department
Type
DUNS #
800772337
City
Tyler
State
TX
Country
United States
Zip Code
75708
Idell, Steven; Florova, Galina; Shetty, Sreerama et al. (2017) Precision-guided, Personalized Intrapleural Fibrinolytic Therapy for Empyema and Complicated Parapneumonic Pleural Effusions: The Case for the Fibrinolytic Potential. Clin Pulm Med 24:163-169
Hijazi, Nuha; Abu Fanne, Rami; Abramovitch, Rinat et al. (2015) Endogenous plasminogen activators mediate progressive intracerebral hemorrhage after traumatic brain injury in mice. Blood 125:2558-67
Armstead, William M; Riley, John; Cines, Douglas B et al. (2014) PAI-1-derived peptide EEIIMD prevents hypoxia/ischemia-induced aggravation of endothelin- and thromboxane-induced cerebrovasoconstriction. Neurocrit Care 20:111-8
Karandashova, Sophia; Florova, Galina; Azghani, Ali O et al. (2013) Intrapleural adenoviral delivery of human plasminogen activator inhibitor-1 exacerbates tetracycline-induced pleural injury in rabbits. Am J Respir Cell Mol Biol 48:44-52
Armstead, William M; Bohman, Leif-Erik; Riley, John et al. (2013) tPA-S(481)A prevents impairment of cerebrovascular autoregulation by endogenous tPA after traumatic brain injury by upregulating p38 MAPK and inhibiting ET-1. J Neurotrauma 30:1898-907
Marcos-Contreras, O A; Ganguly, K; Yamamoto, A et al. (2013) Clot penetration and retention by plasminogen activators promote fibrinolysis. Biochem Pharmacol 85:216-22
Tucker, Torry A; Williams, LaTerrica; Koenig, Kathleen et al. (2012) Lipoprotein receptor-related protein 1 regulates collagen 1 expression, proteolysis, and migration in human pleural mesothelial cells. Am J Respir Cell Mol Biol 46:196-206
Williams, LaTerrica; Tucker, Torry A; Koenig, Kathy et al. (2012) Tissue factor pathway inhibitor attenuates the progression of malignant pleural mesothelioma in nude mice. Am J Respir Cell Mol Biol 46:173-9
Komissarov, Andrey A; Stankowska, Dorota; Krupa, Agnieszka et al. (2012) Novel aspects of urokinase function in the injured lung: role of ?2-macroglobulin. Am J Physiol Lung Cell Mol Physiol 303:L1037-45
Armstead, William M; Riley, John; Cines, Douglas B et al. (2012) Combination therapy with glucagon and a novel plasminogen activator inhibitor-1-derived peptide enhances protection against impaired cerebrovasodilation during hypotension after traumatic brain injury through inhibition of ERK and JNK MAPK. Neurol Res 34:530-7

Showing the most recent 10 out of 63 publications