Protein S-nitrosylation is a ubiquitous, post-translational effector mechanism in which a Cys residue is modified by NO. Dysregulated S-nitrosylation is associated with diverse inflammatory diseases and pathological condi- tions. A concept is emerging in which site-specific modification of disease-related proteins, rather than a global nitrosative activity, contributes to disease initiation and progression. However, molecular mechanisms directing site selectivity are not understood. Our long-term goal is to elucidate mechanisms underlying selective S- nitrosylation, and its pathophysiological role in cardiovascular disease (CVD). We recently observed a remark- able S-nitrosylation-mediated inactivation of the GAIT (IFN-Gamma-Activated Inhibitor of Translation) transla- tional control system, discovered in our laboratory. Interferon (IFN)-?, a prototypic activator of myeloid cells, induces assembly of the GAIT complex that binds RNA elements in the 3?UTR of select target mRNAs, e.g., vascular endothelial growth factor-A, and inhibits their translation. The GAIT complex consists of four ?house- keeping? proteins including ribosomal protein L13a and GAPDH. We recently reported that low density lipopro- tein (LDL) oxidized by the physiological myeloperoxidase (MPO)-H2O2-NO2- system (LDLox) inactivates the GAIT system, thereby increasing expression of VEGF-A and other GAIT targets. LDLox induces S-nitrosylation of GAPDH, inactivating the chaperone-like activity by which GAPDH protects L13a, resulting in degradation of nearly the entire cell complement of L13a. An unprecedented site-specific S-nitrosylation of GAPDH at Cys247 is essential for loss of shielding activity. Recently, we found that LDLox plus IFN-? markedly induce iNOS (inducible nitric oxide synthase) in human monocytes and is required for S-nitrosylation of GAPDH at Cys247. We also showed that a heterotrimeric complex of S100A8, S100A9, and iNOS is cotranslationally assembled, and specifically S-nitrosylates GAPDH at Cys247. Serum and LDL from CVD subjects induce Cys247 GAPDH S- nitrosylation, L13a degradation, and VEGF-A expression in monocytes, supporting the physiological signifi- cance of these events. To further investigate the function of GAPDH S-nitrosylation in vivo, we have engineered Cys245 (mouse analog of human Cys247)-to-Ala knock-in mice. We have begun to investigate the role of S100A8/9 on global S-nitrosylation of macrophage proteins, and on macrophage function. The iNOS- S100A8/9 complex induces S-nitrosylation of a cohort of ~100 proteins, with likely involvement in macrophage gene expression, lipid metabolism, and foam cell formation. In this Project we will test the following hypothesis: LDLox, in the presence of IFN-? induces iNOS and subsequent cotranslational assembly of a ternary iNOS- S100A8/A9 nitrosylase complex that directs nitrosylation of Cys247 on GAPDH and other selected targets, causing dysregulation of the GAIT system and contributing to accelerated atherosclerotic lesion progression. Our results can lead to new biomarkers with strong predictive power, and potentially to new therapeutic targets that disrupt site-selective S-nitrosylation.

Public Health Relevance

Project 2 (P2). Project Narrative Protein S-nitrosylation is a ubiquitous, post-translational effector mechanism in which a Cys residue is modified by NO, and is associated with diverse inflammatory diseases and pathological conditions. A concept is emerging in which site-specific modification of disease-related proteins, rather than a global nitrosative activity, contributes to disease initiation and progression. Our long-term goal is to elucidate mechanisms underlying selective S-nitrosylation and its pathophysiological role in cardiovascular disease.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL076491-13
Application #
9266484
Study Section
Special Emphasis Panel (ZHL1)
Program Officer
Hasan, Ahmed a K
Project Start
2004-08-01
Project End
Budget Start
2017-05-01
Budget End
2018-04-30
Support Year
13
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Cleveland Clinic Lerner
Department
Type
DUNS #
135781701
City
Cleveland
State
OH
Country
United States
Zip Code
44195
Szpak, Dorota; Izem, Lahoucine; Verbovetskiy, Dmitriy et al. (2018) ?M?2 Is Antiatherogenic in Female but Not Male Mice. J Immunol 200:2426-2438
Sarvestani, Samaneh K; Signs, Steven A; Lefebvre, Veronique et al. (2018) Cancer-predicting transcriptomic and epigenetic signatures revealed for ulcerative colitis in patient-derived epithelial organoids. Oncotarget 9:28717-28730
Li, Xinmin S; Wang, Zeneng; Cajka, Tomas et al. (2018) Untargeted metabolomics identifies trimethyllysine, a TMAO-producing nutrient precursor, as a predictor of incident cardiovascular disease risk. JCI Insight 3:
Arif, Abul; Yao, Peng; Terenzi, Fulvia et al. (2018) The GAIT translational control system. Wiley Interdiscip Rev RNA 9:
Eswarappa, Sandeep M; Potdar, Alka A; Sahoo, Sarthak et al. (2018) Metabolic origin of the fused aminoacyl-tRNA synthetase, glutamyl-prolyl-tRNA synthetase. J Biol Chem 293:19148-19156
Halawani, Dalia; Gogonea, Valentin; DiDonato, Joseph A et al. (2018) Structural control of caspase-generated glutamyl-tRNA synthetase by appended noncatalytic WHEP domains. J Biol Chem 293:8843-8860
Brown, J Mark; Hazen, Stanley L (2018) Microbial modulation of cardiovascular disease. Nat Rev Microbiol 16:171-181
Hirbawi, Jamila; Bialkowska, Katarzyna; Bledzka, Kamila M et al. (2017) The extreme C-terminal region of kindlin-2 is critical to its regulation of integrin activation. J Biol Chem 292:14258-14269
Plow, Edward F (2017) An enlightening year in vascular biology. Curr Opin Hematol 24:222-223
Brown, J Mark; Hazen, Stanley L (2017) Targeting of microbe-derived metabolites to improve human health: The next frontier for drug discovery. J Biol Chem 292:8560-8568

Showing the most recent 10 out of 271 publications