Discovery of cardiac progenitor cells (CPCs) in the adult tieart hias led to tieightened expectations for novel treatments of cardiac disease. However, adoptive transfer of CPCs results only in transient improvement of cardiac performance as most donated cells fail to persist in the hostile milieu of the ischemic scar. Whereas approaches focus upon enhancing capabilities of stem cells, engineering of the damaged myocardium is a valid alternative strategy to enhance myocardial repair and regeneration. Extracellular matrix (ECM) proteins are pivotal components of the myocardial environment important in maintenance of cellular function. The overall goal of this proposal is to improve the survival, proliferation, recruitment, and persistence of CPC in the damaged myocardium by modification of fibronectin (Fn) expression, an ECM protein which correlates highly with spatio-temporal appearance of CPCs in the heart. Our preliminary data delineate a Fn-a5pi-FAK- Pim-1 signaling cascade regulating CPC growth and survival. Relevance of Fn, aSpi, FAK and Pim-1 in cardiomyocyte biology are well accepted, however, nothing is known about this pathway in CPCs. The short term goal is to understand the significance of the Fn-a5pi-FAK-Pim-1 pathway in CPCs under pathological conditions and extrapolate an innovative therapeutic approach to engineer the extracellular environment of the damaged myocardium to enhance regeneration and repair. Translational potential will be explored using an adeno-associated virus type 9 (AAV9) vector expressing a f unctional collagen-tethered Fn fragment to enhance CPC survival, proliferation, recruitment, and engraftment.
Our specific aims are: 1) The Fn-a5(31- FAK-Pim-1 signaling axis is triggered following cardiomyopathic injury in vivo, 2) a5(31-integrin receptor activation by Fn induces i mmediate ea riy s tress r esponses, s urvival, and pr oliferation v ia FAK-Pim-1 signaling in CPCs, 3) Robust and persistent CPC-dependent regeneration is mediated by overexpression of a collagen binding Fn fragment delivered by cardiotropic AAV9 vector. Significance is to define beneficial aspects of endogenous repair to injury response. The long term goal is to translate the Fn fragment expressing AAV9 regimen into clinical application to establish innovative therapy for regenerative medicine.

Public Health Relevance

Heart disease, especially heart failure is a major public health issue in the United States with a considerable burden for the health care system. Despite recent progress in understanding the pathophysiology, heart failure still carries a 5-year mortality that rivals most cancers. This proposal focuses upon understanding how the environment of the damaged heart can impact upon repair and regeneration on a cellular and molecular level.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
San Diego State University
San Diego
United States
Zip Code
Parker, Sarah J; Stotland, Aleksandr; MacFarlane, Elena et al. (2018) Proteomics reveals Rictor as a noncanonical TGF-? signaling target during aneurysm progression in Marfan mice. Am J Physiol Heart Circ Physiol 315:H1112-H1126
Broughton, Kathleen M; Wang, Bingyan J; Firouzi, Fareheh et al. (2018) Mechanisms of Cardiac Repair and Regeneration. Circ Res 122:1151-1163
Broughton, Kathleen M; Sussman, Mark A (2018) Enhancement Strategies for Cardiac Regenerative Cell Therapy: Focus on Adult Stem Cells. Circ Res 123:177-187
Gude, Natalie A; Sussman, Mark A (2018) Chasing c-Kit through the heart: Taking a broader view. Pharmacol Res 127:110-115
Yu, Olivia M; Benitez, Jorge A; Plouffe, Steven W et al. (2018) YAP and MRTF-A, transcriptional co-activators of RhoA-mediated gene expression, are critical for glioblastoma tumorigenicity. Oncogene 37:5492-5507
Gude, Natalie A; Firouzi, Fareheh; Broughton, Kathleen M et al. (2018) Cardiac c-Kit Biology Revealed by Inducible Transgenesis. Circ Res 123:57-72
Shires, Sarah E; Gustafsson, Åsa B (2018) Regulating Renewable Energy: Connecting AMPK?2 to PINK1/Parkin-Mediated Mitophagy in the Heart. Circ Res 122:649-651
Woodall, Benjamin P; Gustafsson, Åsa B (2018) Mesenchymal Stem Cell-Mediated Autophagy Inhibition. Circ Res 123:518-520
Lampert, Mark A; Gustafsson, Åsa B (2018) Balancing Autophagy for a Healthy Heart. Curr Opin Physiol 1:21-26
Kubli, Dieter A; Sussman, Mark A (2018) Editorial commentary: Mitochondrial autophagy in cardiac aging is all fluxed up. Trends Cardiovasc Med 28:261-262

Showing the most recent 10 out of 162 publications