The Morphology and Imaging Core will provide for analyses of atherosclerosis in animal models, providing measures of extent, rate of progression and composition using both conventional and novel technologies. In addition it will provide a variety of imaging techniques useful in both in vitro and in vivo analyses of experimental models. This Core will be a collaborative effort between units located at The Scripps Research Institute under the direction of Dr. Linda Curtiss and one located at University California, San Diego under Dr. Yury Miller. The overall goal of the Core will be to provide investigators in each of the units both conventional and novel techniques to assess both the extent as well as progression of atherosclerosis in murine models, to provide techniques to allow characterization of lesions, and to provide a variety of imaging techniques useful in both in vitro and in vivo experimental models.
The Aims of this Core are:
Specific Aim 1 : To provide measurements of the extent of atherosclerosis in murine models. This will include use of standard en face measurements of areas throughout the length of the aorta, the use of a computer assisted technique to provide more standardized volume measurements of lesion burden at the aortic sinus, and use of'a novel measurement of rate of early lesion progression using laser scanning confocal immunofluorescence to provide a quantitative technique to asses in situ aortic macrophage infiltration.
Specific Aim 2 : To provide qualitative and quantitative imaging analysis of tissue and cellular morphology. This will include use of laser scanning confocal microscopy studies to provide novel qualitative images, in three dimension, of lesions at various stages of development, as well as the use of deconvolution microscopy to provide qualitative and quantitative analysis of morphology within lesions or cells in culture.
Specific Aim 3 : To validate the use of laser capture microdissection to allow microanalysis of gene expression in lesions or within groups of defined cells within lesions.
Winkels, Holger; Ehinger, Erik; Ghosheh, Yanal et al. (2018) Atherosclerosis in the single-cell era. Curr Opin Lipidol 29:389-396 |
Prohaska, Thomas A; Que, Xuchu; Diehl, Cody J et al. (2018) Massively Parallel Sequencing of Peritoneal and Splenic B Cell Repertoires Highlights Unique Properties of B-1 Cell Antibodies. J Immunol 200:1702-1717 |
Kobiyama, Kouji; Vassallo, Melanie; Mitzi, Jessica et al. (2018) A clinically applicable adjuvant for an atherosclerosis vaccine in mice. Eur J Immunol 48:1580-1587 |
Liu, Chao; Kim, Young Sook; Kim, Jungsu et al. (2018) Modeling hypercholesterolemia and vascular lipid accumulation in LDL receptor mutant zebrafish. J Lipid Res 59:391-399 |
Hoeksema, Marten A; Glass, Christopher K (2018) Nature and nurture of tissue-specific macrophage phenotypes. Atherosclerosis : |
Winkels, Holger; Ehinger, Erik; Vassallo, Melanie et al. (2018) Atlas of the Immune Cell Repertoire in Mouse Atherosclerosis Defined by Single-Cell RNA-Sequencing and Mass Cytometry. Circ Res 122:1675-1688 |
Schneider, Dina A; Choi, Soo-Ho; Agatisa-Boyle, Colin et al. (2018) AIBP protects against metabolic abnormalities and atherosclerosis. J Lipid Res 59:854-863 |
Hartmann, Phillipp; Hochrath, Katrin; Horvath, Angela et al. (2018) Modulation of the intestinal bile acid/farnesoid X receptor/fibroblast growth factor 15 axis improves alcoholic liver disease in mice. Hepatology 67:2150-2166 |
Ahmadian, Maryam; Liu, Sihao; Reilly, Shannon M et al. (2018) ERR? Preserves Brown Fat Innate Thermogenic Activity. Cell Rep 22:2849-2859 |
Kobiyama, Kouji; Ley, Klaus (2018) Atherosclerosis. Circ Res 123:1118-1120 |
Showing the most recent 10 out of 172 publications