The Morphology and Imaging Core will provide for analyses of atherosclerosis in animal models, providing measures of extent, rate of progression and composition using both conventional and novel technologies. In addition it will provide a variety of imaging techniques useful in both in vitro and in vivo analyses of experimental models. This Core will be a collaborative effort between units located at The Scripps Research Institute under the direction of Dr. Linda Curtiss and one located at University California, San Diego under Dr. Yury Miller. The overall goal of the Core will be to provide investigators in each of the units both conventional and novel techniques to assess both the extent as well as progression of atherosclerosis in murine models, to provide techniques to allow characterization of lesions, and to provide a variety of imaging techniques useful in both in vitro and in vivo experimental models.
The Aims of this Core are:
Specific Aim 1 : To provide measurements of the extent of atherosclerosis in murine models. This will include use of standard en face measurements of areas throughout the length of the aorta, the use of a computer assisted technique to provide more standardized volume measurements of lesion burden at the aortic sinus, and use of'a novel measurement of rate of early lesion progression using laser scanning confocal immunofluorescence to provide a quantitative technique to asses in situ aortic macrophage infiltration.
Specific Aim 2 : To provide qualitative and quantitative imaging analysis of tissue and cellular morphology. This will include use of laser scanning confocal microscopy studies to provide novel qualitative images, in three dimension, of lesions at various stages of development, as well as the use of deconvolution microscopy to provide qualitative and quantitative analysis of morphology within lesions or cells in culture.
Specific Aim 3 : To validate the use of laser capture microdissection to allow microanalysis of gene expression in lesions or within groups of defined cells within lesions.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL088093-03
Application #
8064296
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2010-04-01
Budget End
2011-03-31
Support Year
3
Fiscal Year
2010
Total Cost
$281,243
Indirect Cost
Name
University of California San Diego
Department
Type
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Que, Xuchu; Hung, Ming-Yow; Yeang, Calvin et al. (2018) Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolaemic mice. Nature 558:301-306
Senders, Max L; Que, Xuchu; Cho, Young Seok et al. (2018) PET/MR Imaging of Malondialdehyde-Acetaldehyde Epitopes With a Human Antibody Detects Clinically Relevant Atherothrombosis. J Am Coll Cardiol 71:321-335
Fan, Weiwei; He, Nanhai; Lin, Chun Shi et al. (2018) ERR? Promotes Angiogenesis, Mitochondrial Biogenesis, and Oxidative Remodeling in PGC1?/?-Deficient Muscle. Cell Rep 22:2521-2529
Shalom-Barak, Tali; Liersemann, Jaclyn; Memari, Babak et al. (2018) Ligand-Dependent Corepressor (LCoR) Is a Rexinoid-Inhibited Peroxisome Proliferator-Activated Receptor ?-Retinoid X Receptor ? Coactivator. Mol Cell Biol 38:
Winkels, Holger; Ehinger, Erik; Ghosheh, Yanal et al. (2018) Atherosclerosis in the single-cell era. Curr Opin Lipidol 29:389-396
Prohaska, Thomas A; Que, Xuchu; Diehl, Cody J et al. (2018) Massively Parallel Sequencing of Peritoneal and Splenic B Cell Repertoires Highlights Unique Properties of B-1 Cell Antibodies. J Immunol 200:1702-1717
Kobiyama, Kouji; Vassallo, Melanie; Mitzi, Jessica et al. (2018) A clinically applicable adjuvant for an atherosclerosis vaccine in mice. Eur J Immunol 48:1580-1587
Liu, Chao; Kim, Young Sook; Kim, Jungsu et al. (2018) Modeling hypercholesterolemia and vascular lipid accumulation in LDL receptor mutant zebrafish. J Lipid Res 59:391-399
Hoeksema, Marten A; Glass, Christopher K (2018) Nature and nurture of tissue-specific macrophage phenotypes. Atherosclerosis :
Winkels, Holger; Ehinger, Erik; Vassallo, Melanie et al. (2018) Atlas of the Immune Cell Repertoire in Mouse Atherosclerosis Defined by Single-Cell RNA-Sequencing and Mass Cytometry. Circ Res 122:1675-1688

Showing the most recent 10 out of 172 publications