The Advanced Bioinformatics Core will analyze and integrate data from multiple sources, e.g., affinity purification followed by mass spectrometry (AP-MS), chromatin immunoprecipitation followed by DNA sequencing (ChlP-Seq), gene expression by RNA-Seq and other methods to identify biologically relevant cellular pathways and processes in cardiac differentiation. It will make use of novel programs such as MiST for AP-MS data and other algorithms developed by the Gladstone Bioinformatics Core to accurately analyze ChlP-Seq and RNA-Seq data. This core will leverage the expertise in the existing Gladstone Bioinformatics Core but focus on protein-protein interaction data and its integration with other gene regulatory datasets to establish combinatorial interactions that control gene expression during cardiac differentiation.
The networks we uncover in this study will inform our understanding of the molecular instrucfions that enable the embryo to make a heart, providing the underlying knowledge necessary to identify targets for therapeufic approaches to heart failure or severe heart damage.
Showing the most recent 10 out of 72 publications