The Imaging Core (Core C) will be crucial for the quality and productivity of all participating projects. The Imaging Core centralizes the equipment, purchasing of supplies, training and scheduling required to complete the imaging experiments proposed in the four projects comprising this Program Project Grant. The microscopy imaging experiments that will be supported by this core include: light, fluorescence, laser scanning confocal and time-lapse confocal microscopy. Core C will provide investigators with the necessary microscopy equipment, which is already in place. In addition, Core C staff will provide the professional training required for specific imaging applications, including the use of hardware, specific imaging software, data acquisition and analysis necessary to carry out the proposed experiments accurately and in a timely manner. This will increase the efficiency and productivity of the Program Project Grant, because all personnel will be properly trained, and common techniques will be standardized. This will likewise reduce costs by eliminating duplication of efforts. Core C will also provide all of the reagents required for imaging, including fluorescent antibodies and dyes. This will eliminate waste and duplication of supplies and effort. Additionally, Core C will maintain all equipment through service contracts. This will ensure that all equipment is in proper working order when needed by individual projects, thereby reducing downtime and increasing efficiency.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
1P01HL090550-01A1
Application #
7595346
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
2009-04-01
Project End
2014-03-31
Budget Start
2009-04-01
Budget End
2010-03-31
Support Year
1
Fiscal Year
2009
Total Cost
$182,186
Indirect Cost
Name
Henry Ford Health System
Department
Type
DUNS #
073134603
City
Detroit
State
MI
Country
United States
Zip Code
48202
Zenner, Zachary P; Gordish, Kevin L; Beierwaltes, William H (2018) Free radical scavenging reverses fructose-induced salt-sensitive hypertension. Integr Blood Press Control 11:1-9
Gordish, Kevin L; Beierwaltes, William H (2016) Chronic resveratrol reverses a mild angiotensin II-induced pressor effect in a rat model. Integr Blood Press Control 9:23-31
Jaykumar, Ankita Bachhawat; Caceres, Paulo S; Sablaban, Ibrahim et al. (2016) Real-time monitoring of NKCC2 endocytosis by total internal reflection fluorescence (TIRF) microscopy. Am J Physiol Renal Physiol 310:F183-91
Gordish, Kevin L; Beierwaltes, William H (2014) Resveratrol induces acute endothelium-dependent renal vasodilation mediated through nitric oxide and reactive oxygen species scavenging. Am J Physiol Renal Physiol 306:F542-50
Cabral, Pablo D; Garvin, Jeffrey L (2013) Less potassium coming out, less sodium going in: phenotyping ROMK knockout rats. Hypertension 62:240-1
Ortiz-Capisano, M Cecilia; Reddy, Mahendranath; Mendez, Mariela et al. (2013) Juxtaglomerular cell CaSR stimulation decreases renin release via activation of the PLC/IP(3) pathway and the ryanodine receptor. Am J Physiol Renal Physiol 304:F248-56
Ramseyer, Vanesa D; Garvin, Jeffrey L (2013) Tumor necrosis factor-ýý: regulation of renal function and blood pressure. Am J Physiol Renal Physiol 304:F1231-42
Beierwaltes, William H (2013) Endothelial dysfunction in the outer medullary vasa recta as a key to contrast media-induced nephropathy. Am J Physiol Renal Physiol 304:F31-2
Atchison, Douglas K; Beierwaltes, William H (2013) The influence of extracellular and intracellular calcium on the secretion of renin. Pflugers Arch 465:59-69
Atchison, Douglas K; Harding, Pamela; Beierwaltes, William H (2013) Vitamin D increases plasma renin activity independently of plasma Ca2+ via hypovolemia and ?-adrenergic activity. Am J Physiol Renal Physiol 305:F1109-17

Showing the most recent 10 out of 38 publications