Premature atherosclerosis is the major cause of morbidity and mortality in both types 1 and 2 diabetes. The overall objective of this Program Project is to better understand biochemical and molecular mechanisms involved in the pathogenesis of diabetic macrovascular disease. The program project is comprised of 4 inter-related projects and 3 cores. Project 1 will study the the role of an inflammatory molecule, serum amyloid A (SAA) in mediating the interaction of atherogenic lipoproteins with the vascular wall, thereby enhancing atherosclerosis. It will investigate how SAA alters the interaction of lipoproteins with extracellular vascular matrix molecules and alters cellular lipid metabolism and endothelial activation providing insight into the link between inflammation and atherosclerosis in diabetes. Project 2 is aimed at understanding the role of fatty acyl-CoA synthesis in the initiation of atherosclerosis in diabetes. Acyl-CoA synthesis is increased in diabetes. The effect of modulation of acyl-CoA synthesis in endothelial cells and macrophages on lesion initiation and inflammation is the focus of this project. Project 3 will study the role of diabetes on the regulation of reverse cholesterol transport, a process that plays a critical role in atherogenesis. The effect of diabetes on transporters that play critical roles in removing excess lipids from cells will be studied in this project. Project 4 will study biochemical pathways involved in glycation and glycoxidation reactions that play a role in damaging HDL, thereby accelerating atherosclerosis in diabetes. This project will also assess how the diabetic milieu alters HDL's protein composition and its anti-inflammatory properties. Diabetes-mediated alterations in HDL composition and function could impair HDL's atheroprotective functions and accelerate atherosclerosis in diabetes. These projects will be supported by an administrative and 2 scientific cores: The Mouse and Tisssue Core will provide the projects with mice and histochemical and immunohistochemical evaluation of tissues from several mouse models of diabetes. The Mass Spectrometry Core will provide sophisticated biochemical support for the in vitro and in vivo studies proposed in all the projects. The increased understanding of the pathogenesis of the premature vascular disease in diabetes that will be derived has important therapeutic implications for the prevention and treatment of macrovascular disease in diabetes.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL092969-51
Application #
8105150
Study Section
Special Emphasis Panel (ZHL1-PPG-J (M2))
Program Officer
Ershow, Abby
Project Start
1997-03-01
Project End
2013-05-31
Budget Start
2011-06-01
Budget End
2012-05-31
Support Year
51
Fiscal Year
2011
Total Cost
$2,226,221
Indirect Cost
Name
University of Washington
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Wall, Valerie Z; Barnhart, Shelley; Kanter, Jenny E et al. (2018) Smooth muscle glucose metabolism promotes monocyte recruitment and atherosclerosis in a mouse model of metabolic syndrome. JCI Insight 3:
Kanter, Jenny E; Kramer, Farah; Barnhart, Shelley et al. (2018) A Novel Strategy to Prevent Advanced Atherosclerosis and Lower Blood Glucose in a Mouse Model of Metabolic Syndrome. Diabetes 67:946-959
Yuan, Chujun; Hu, Jiyuan; Parathath, Saj et al. (2018) Human Aldose Reductase Expression Prevents Atherosclerosis Regression in Diabetic Mice. Diabetes 67:1880-1891
Rune, Ida; Rolin, Bidda; Lykkesfeldt, Jens et al. (2018) Long-term Western diet fed apolipoprotein E-deficient rats exhibit only modest early atherosclerotic characteristics. Sci Rep 8:5416
Shao, Baohai; Heinecke, Jay W (2018) Quantifying HDL proteins by mass spectrometry: how many proteins are there and what are their functions? Expert Rev Proteomics 15:31-40
Basu, Debapriya; Hu, Yunying; Huggins, Lesley-Ann et al. (2018) Novel Reversible Model of Atherosclerosis and Regression Using Oligonucleotide Regulation of the LDL Receptor. Circ Res 122:560-567
Scolaro, Bianca; Nogueira, Marina S; Paiva, Aline et al. (2018) Statin dose reduction with complementary diet therapy: A pilot study of personalized medicine. Mol Metab 11:137-144
Fang, Xiang; Dorcely, Brenda; Ding, Xi-Ping et al. (2018) Glycemic reduction alters white blood cell counts and inflammatory gene expression in diabetes. J Diabetes Complications 32:1027-1034
Wight, Thomas N (2018) A role for proteoglycans in vascular disease. Matrix Biol 71-72:396-420
Bornfeldt, Karin E; Kramer, Farah; Batorsky, Anna et al. (2018) A Novel Type 2 Diabetes Mouse Model of Combined Diabetic Kidney Disease and Atherosclerosis. Am J Pathol 188:343-352

Showing the most recent 10 out of 136 publications