Stem Cells and Cardiovascular Repair: We propose a comprehensive program on myocardial infarct repair using adult and pluripotent human stem cells, with an emphasis on pre-clinical translation. There are 3 projects and 3 cores. Project 1 (Murry, Schwartz, Mahoney) focuses on vascularization, beginning with transplants of clinically relevant sources of human cardiomyocytes, endothelium and MSCs. Next, they transplant a multipotent human cardiovascular progenitor from ESCs, capable of generating cardiomyocytes, endothelium and smooth muscle, to generate vascularized myocardium in the infarct. Finally, they explore mechanisms through which grafts induce collateral arterialization from the host coronaries. Project 2 (Laflamme, Santana) studies the electro-physiology of human cardiomyocytes, using genetic selection to generate pacemaker vs. working-type cells. They will identify signaling pathways that specify hESC-derived myocytes into working-type vs. pacemaker phenotypes, with a goal of determining if pacemaker cells are precursors of the working-type cells or a separate stable branch. Lastly, they use cell transplantation to assess the ability of the different myocyte subtypes to couple with host cardiomyocytes and test their differential effects on electrical stability. Project 3 (Torok-Storb, Bowen-Pope) develops a pre-clinical model in the dog for cardiac repair. They will generate a system for scalable production of cardiomyocytes from their recently generated canine induced pluripotent stem cells (iPSCs). Next, they investigate if MSCs can pro-mote repair by endogenous cells and exogenous cardio-myocytes, including testing if MSCs induce third-party tolerance to allogeneic cardiomyocytes. Finally, they perform transplantation studies with canine iPSC-derived cardiomyocytes and MSCs, creating a clinically relevant model of cardiac stem cell therapy in the dog. Projects are supported by a Stem Cell Core (A) that trains investigators in hESC use and provides differentiated cells i.e., cardiomyocytes;an Out-comes Core (B) provides histology services, a central source of expertise in animal models of myocardial infarction, cell transplantation and physiological assessment;and an Administrative Core (C) to coordinate meetings, seminar series, provide fiscal support and plan the annual PPG retreat.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Program Officer
Lundberg, Martha
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Washington
Schools of Medicine
United States
Zip Code
Liu, Yen-Wen; Chen, Billy; Yang, Xiulan et al. (2018) Human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human primates. Nat Biotechnol 36:597-605
Hofsteen, Peter; Robitaille, Aaron Mark; Strash, Nicholas et al. (2018) ALPK2 Promotes Cardiogenesis in Zebrafish and Human Pluripotent Stem Cells. iScience 2:88-100
Neidig, Lauren E; Weinberger, Florian; Palpant, Nathan J et al. (2018) Evidence for Minimal Cardiogenic Potential of Stem Cell Antigen 1-Positive Cells in the Adult Mouse Heart. Circulation 138:2960-2962
Leonard, Andrea; Bertero, Alessandro; Powers, Joseph D et al. (2018) Afterload promotes maturation of human induced pluripotent stem cell derived cardiomyocytes in engineered heart tissues. J Mol Cell Cardiol 118:147-158
Hansen, Katrina J; Laflamme, Michael A; Gaudette, Glenn R (2018) Development of a Contractile Cardiac Fiber From Pluripotent Stem Cell Derived Cardiomyocytes. Front Cardiovasc Med 5:52
Eschenhagen, Thomas; Bolli, Roberto; Braun, Thomas et al. (2017) Cardiomyocyte Regeneration: A Consensus Statement. Circulation 136:680-686
Hansen, Katrina J; Favreau, John T; Gershlak, Joshua R et al. (2017) Optical Method to Quantify Mechanical Contraction and Calcium Transients of Human Pluripotent Stem Cell-Derived Cardiomyocytes. Tissue Eng Part C Methods 23:445-454
Palpant, Nathan J; Wang, Yuliang; Hadland, Brandon et al. (2017) Chromatin and Transcriptional Analysis of Mesoderm Progenitor Cells Identifies HOPX as a Regulator of Primitive Hematopoiesis. Cell Rep 20:1597-1608
Palpant, Nathan J; Pabon, Lil; Friedman, Clayton E et al. (2017) Generating high-purity cardiac and endothelial derivatives from patterned mesoderm using human pluripotent stem cells. Nat Protoc 12:15-31
Yang, Xiulan; Murry, Charles E (2017) One Stride Forward: Maturation and Scalable Production of Engineered Human Myocardium. Circulation 135:1848-1850

Showing the most recent 10 out of 93 publications