The purpose of the Microscopy and Histology Core (Core B) is to provide facilities, resources, training and support to participants of the PPG for brightfield and fluorescence imaging as experimental tools to visualize and localize reactive oxygen species (ROS), inflammatory signaling components and inflammatory cells in cardiovascular tissue in humans and animal models of disease. The facilities of the Microscopy and Histology Core provide for tissue processing and histological preparations, immunohistochemical and immunocytochemical imaging, and laser scanning confocal microscopy (LSCM) imaging. The Microscopy and Histology Core staff will offer supervision, maintenance, training and support for the microscopes, tissue processing equipment, computers and image analysis software. Finally, experienced and skilled imaging experts on the staff will provide consultative services for planning and evaluating experiments. Thus the addition of the Microscopy and Histology Core facility will significantly enhance the ability of project leaders to visualize the locations of ROS production, signaling proteins or inflammatory cell invasion within tissues under a variety of experimental or pathological conditions. Importantly, these morphological data will be correlated with other more quantitative methods, such as electron spin resonance (ESR) spectroscopy to measure ROS (in Core C) and immunoblotting to measure expression of proteins within cells or tissues.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL095070-04
Application #
8380237
Study Section
Special Emphasis Panel (ZHL1-PPG-A)
Project Start
Project End
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
4
Fiscal Year
2012
Total Cost
$143,570
Indirect Cost
$51,007
Name
Emory University
Department
Type
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Paredes, Felipe; Suster, Izabela; Martin, Alejandra San (2018) Poldip2 takes a central role in metabolic reprograming. Oncoscience 5:130-131
Lee, Grace Sanghee; Salazar, Hector F; Joseph, Giji et al. (2018) Osteopontin isoforms differentially promote arteriogenesis in response to ischemia via macrophage accumulation and survival. Lab Invest :
Simmons, Craig A; Jo, Hanjoong (2018) Editorial: Special Issue on Heart Valve Mechanobiology : New Insights into Mechanical Regulation of Valve Disease and Regeneration. Cardiovasc Eng Technol 9:121-125
Williams, Holly C; Ma, Jing; Weiss, Daiana et al. (2018) The cofilin phosphatase slingshot homolog 1 restrains angiotensin II-induced vascular hypertrophy and fibrosis in vivo. Lab Invest :
Yeligar, Samantha M; Kang, Bum-Yong; Bijli, Kaiser M et al. (2018) PPAR? Regulates Mitochondrial Structure and Function and Human Pulmonary Artery Smooth Muscle Cell Proliferation. Am J Respir Cell Mol Biol 58:648-657
Vukelic, Sasa; Xu, Qian; Seidel-Rogol, Bonnie et al. (2018) NOX4 (NADPH Oxidase 4) and Poldip2 (Polymerase ?-Interacting Protein 2) Induce Filamentous Actin Oxidation and Promote Its Interaction With Vinculin During Integrin-Mediated Cell Adhesion. Arterioscler Thromb Vasc Biol 38:2423-2434
Hernandes, Marina S; Lass├Ęgue, Bernard; Hilenski, Lula L et al. (2018) Polymerase delta-interacting protein 2 deficiency protects against blood-brain barrier permeability in the ischemic brain. J Neuroinflammation 15:45
Okwan-Duodu, Derick; Hansen, Laura; Joseph, Giji et al. (2018) Impaired Collateral Vessel Formation in Sickle Cell Disease. Arterioscler Thromb Vasc Biol 38:1125-1133
Hu, Shuhong; Liu, Yifei; You, Tao et al. (2018) Vascular Semaphorin 7A Upregulation by Disturbed Flow Promotes Atherosclerosis Through Endothelial ?1 Integrin. Arterioscler Thromb Vasc Biol 38:335-343
Heath, Jack M; Fernandez Esmerats, Joan; Khambouneheuang, Lucky et al. (2018) Mechanosensitive microRNA-181b Regulates Aortic Valve Endothelial Matrix Degradation by Targeting TIMP3. Cardiovasc Eng Technol 9:141-150

Showing the most recent 10 out of 125 publications